- •1.1. Общая физиология нервной системы
- •1.1.1. Основные типы строения нервной системы
- •1.1.2. Мембранные потенциалы нервных элементов
- •1.1.3. Потенциалы и трансмембранные токи при возбуждении
- •1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- •1.1.5. Межклеточные пространства в нервной системе
- •1.1.6. Аксонный транспорт
- •1.1.7. Физиология синапсов
- •1.1.8. Нервные сети и основные законы их функционирования
- •1.1.9. Рефлексы и рефлекторные дуги
- •1.1.10. Элементы эволюции нервной системы
- •1.2. Общая физиология мышц
- •1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- •1.2.2. Механизм мышечного возбуждения
- •1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- •1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- •1.2.5. Механика мышцы
- •1.2.6. Энергетика мышцы
- •1.2.7. Особенности мышцы сердца позвоночных животных
- •1.2.8. Общая физиология гладких мышц позвоночных животных
- •1.2.9. Характеристика некоторых мышц беспозвоночных животных
- •1.2.10. Элементы эволюции мышц
- •1.2.11. Электрические органы рыб
- •1.2.12. Немышечные формы двигательной активности
- •1.3. Физиология секреторной клетки
- •1.3.1. Поступление предшественников секрета в клетку
- •1.3.2. Выведение веществ из клетки
- •2.1. Совершенствование регуляторных механизмов в процессе эволюции
- •2.2. Характеристика гуморальных механизмов регуляции
- •2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- •2.2.2. Регуляция функций эндокринной системы
- •2.2.3. Функциональное значение гормонов
- •2.2.4. Механизм действия гормонов
- •2.2.5. Классификация гормонов
- •2.3. Единство нервных и гуморальных механизмов регуляции
- •2.3.1. Саморегуляция функций организма
- •2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- •2.3.3. Рефлекторный принцип регуляции функций
- •2.4. Общие черты компенсаторно-приспособительных реакций организма
- •3.1.2. Нервная система позвоночных животных
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо-гипофизарная система
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- •3.14.2. Сон как форма приобретенного поведения
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17.2. Высшие интегративные системы мозга
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека-оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •4.1.2. Преобразование сигналов в рецепторах
- •4.1.3. Адаптация рецепторов
- •4.1.4. Сенсорные пути
- •4.1.5. Сенсорное кодирование
- •4.2. Соматическая сенсорная система
- •4.2.1. Соматическая сенсорная система беспозвоночных животных
- •4.2.2. Соматическая сенсорная система позвоночных животных
- •4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- •4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- •4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- •4.4. Сенсорная система боковой линии
- •4.4.2. Электрорецепторы
- •4.4.3. Восходящие пути
- •4.5. Гравитационная сенсорная система
- •4.5.1. Гравитационная сенсорная система беспозвоночных животных
- •4.5.2. Гравитационная сенсорная система позвоночных животных
- •4.6. Слуховая сенсорная система
- •4.6.1. Физические характеристики звуковых сигналов
- •4.6.2. Слуховая сенсорная система беспозвоночных животных
- •4.6.3. Слуховая сенсорная система позвоночных животных
- •4.6.4. Эхолокация
- •4.7. Хеморецепторные сенсорные системы
- •4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- •4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- •4.8. Зрительная сенсорная система
- •4.8.1. Организация фоторецепторов
- •4.8.2. Механизмы фоторецепции
- •4.8.3. Зрительная сенсорная система беспозвоночных животных
- •4.8.4. Зрительная сенсорная система позвоночных животных
- •5.1. Дуга автономного рефлекса
- •5.1.1. Подразделение автономной нервной системы
- •5.1.2. Анатомические структуры
- •5.1.4. Различия в конструкции автономной и соматической нервной системы
- •5.1.5. Чувствительное звено дуги автономного рефлекса
- •5.1.6. Ассоциативное (вставочное) звено
- •5.1.7. Эфферентное звено
- •5.2. Синаптическая передача
- •5.2.1. Ацетилхолин
- •5.2.2. Норадреналин и адреналин
- •5.2.3. Трансдукторы
- •5.2.4. Серотонин
- •5.2.5. Аденозинтрифосфат (атф)
- •5.2.6. Вероятные кандидаты в медиаторы
- •5.2.7. Активные факторы
- •5.3.2. Аксон-рефлекс
- •5.3.3. Висцеросоматический рефлекс
- •5.3.4. Висцеросенсорный рефлекс
- •5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- •5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- •5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- •5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- •5.4.4. Тоническая активность
- •5.5.2. Стволовые центры
- •5.5.3. Гипоталамические центры
- •5.5.4. Лимбическая система
- •5.5.5. Мозжечок
- •5.5.6. Ретикулярная формация
- •5.5.7. Кора больших полушарий
- •6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- •6.1.1. Методы изучения функций желез внутренней секреции
- •6.1.2. Понятие о нейросекреции
- •6.2.1. Гипоталамо-нейрогипофизарная система
- •6.2.2. Гипоталамо-аденогипофизарная система
- •6.2.3. Гипофиз
- •6.2.4. Шишковидное тело
- •6.3.2. Надпочечник и его гормоны
- •6.3.3. Гонады и половые гормоны
- •6.4.2. Гормональная регуляция водно-солевого гомеостаза
- •6.5. Поджелудочная железа и ее гормоны
- •6.6. Гормоны пищеварительного тракта
- •6.7. Гормоны сердечно-сосудистой системы
- •6.7.1. Гормоны сердца
- •6.7.2. Гормоны эндотелия
- •6.8. Гормоны плазмы и клеток крови
- •6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- •6.10. Рецепторы гормонов
- •7.1. Эволюция внутренней среды организма
- •7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- •7.3. Понятие о системе крови
- •7.3.1. Основные функции крови
- •7.3.2. Объем и состав крови
- •7.3.3. Физико-химические свойства крови
- •7.4. Плазма крови
- •5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- •7.5. Форменные элементы крови
- •7.5.1. Эритроциты
- •7.5.2. Пигменты крови
- •7.5.3.Скорость оседания эритроцитов (соэ)
- •7.5.4. Лейкоциты
- •7.5.5. Тромбоциты
- •7.6. Гемостаз (остановка кровотечения)
- •7.6.1. Свертывание крови
- •7.6.3. Противосвертывающие механизмы
- •7.7. Группы крови
- •7.7.2. Резус-фактор
- •7.8. Кроветворение и его регуляция
- •7.8.1. Эритропоэз
- •7.8.2. Лейкопоэз. Тромбоцитопоэз
- •7.9. Лимфа
- •8.1. Компоненты иммунной системы
- •8. 2. Механизмы неспецифического (врожденного) иммунитета
- •8.2.1. Фагоцитоз
- •8.2.2. Внеклеточное уничтожение (цитотоксичность)
- •8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- •8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- •8.3. Механизмы специфического приобретенного иммунитета
- •8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- •8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- •8.4.2. Участие цитокинов в регуляции иммунных реакций
- •8.4.4. Регуляторные иммунонейроэндокринные сети
- •9.2. Функции сердца
- •9.2.1. Общие принципы строения
- •9.2.2. Свойства сердечной мышцы
- •9.2.3. Механическая работа сердца
- •9.2.4. Тоны сердца
- •9.2.5. Основные показатели деятельности сердца
- •9.4. Регуляция работы сердца
- •9.4.1. Внутриклеточная регуляция
- •9.4.2. Межклеточная регуляция
- •9.4.3. Внутрисердечная нервная регуляция
- •9.4.4. Экстракардиальная нервная регуляция
- •9.4.5. Гуморальная регуляция
- •9.4.6. Тонус сердечных нервов
- •9.4.7. Гипоталамическая регуляция
- •9.4.8. Корковая регуляция
- •9.4.9. Рефлекторная регуляция
- •9.4.10. Эндокринная функция сердца
- •9.5. Сосудистая система
- •9.5.1. Эволюция сосудистой системы
- •9.5.2. Функциональные типы сосудов.
- •9.5.3. Основные законы гемодинамики
- •9.5.4. Давление в артериальном русле
- •9.5.5. Артериальный пульс
- •9.5.6. Капиллярный кровоток
- •9.5.7. Кровообращение в венах
- •9.6. Регуляция кровообращения
- •9.6.1. Местные механизмы регуляции кровообращения
- •9.6.2. Нейрогуморальная регуляция системного кровообращения
- •9.7. Кровяное депо
- •9.8.2. Мозговое кровообращение
- •9.8.3. Легочное кровообращение
- •9.8.4. Кровообращение в печени
- •9.8.5. Почечное кровообращение
- •9.8.6. Кровообращение в селезенке
- •9.9. Кровообращение плода
- •9.10.3. Состав, свойства, количество лимфы
- •9.10.4. Лимфообразование
- •9.10.5. Лимфоотток
- •10.1. Эволюция типов дыхания
- •10.1.1. Дыхание беспозвоночных животных
- •10.1.2. Дыхание позвоночных животных
- •10.2. Дыхательный акт и вентиляция легких
- •10.2.1. Дыхательные мышцы
- •10.2.2. Дыхательный акт
- •10.2.3. Вентиляция легких и внутрилегочный объем газов
- •10.2.4. Соотношение вентиляции и перфузии легких
- •10.2.5. Паттерны дыхания
- •10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- •10.3.2. Транспорт кислорода кровью
- •10.3.3. Транспорт углекислого газа кровью
- •10.3.4. Транспорт кислорода и углекислого газа в тканях
- •10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- •10.4.3. Механорецепторы дыхательной системы
- •10.4.4. Роль надмостовых структур
- •10.5.2. Влияние уровня бодрствования
- •10.5.3. Эмоциональные и стрессорные факторы
- •10.5.4. Мышечная деятельность
- •11.1. Источники энергии и пути ее превращения в организме
- •11.1.1. Единицы измерения энергии
- •11.1.3.Методы исследования обмена энергии
- •11.1.4. Основной обмен
- •11.1.5. Обмен в покое и при мышечной работе
- •11.1.7. Запасы энергии
- •11.2. Питание
- •11.2.1. Потребность в пище и рациональное питание
- •11.2.2. Потребность в воде
- •11.2.3. Потребность в минеральных веществах
- •11.2.4. Потребность в углеводах
- •11.2.5. Потребность в липидах
- •11.2.6. Потребность в белках
- •11.2.7. Потребность в витаминах
- •11.2.8. Потребность в пищевых волокнах
- •11.3. Терморегуляция
- •11.3.1. Пойкилотермия и гомойотермия
- •11.3.2. Температура тела
- •11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- •11.3.4. Центральные (мозговые) механизмы терморегуляции
- •11.3.5. Теплопродукция
- •11.3.6. Теплоотдача
- •11.3.9. Тепловая и холодовая адаптация
- •11.3.10. Сезонная спячка
- •11.3.11. Онтогенез терморегуляции
- •11.3.12. Лихорадка
- •12.1.2. Регуляторная часть пищеварительной системы
- •12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- •12.1.4. Типы пищеварения
- •12.2. Секреторная функция
- •12.2.1. Слюнные железы
- •12.2.2. Железы желудка
- •12.2.3. Поджелудочная железа
- •12.2.4. Желчеотделение и желчевыделение
- •12.2.5. Секреция кишечных желез
- •12.3. Переваривание пищевых веществ
- •12.4. Мембранное пищеварение и всасывание
- •12.4.2. Всасывание
- •12.5. Моторная функция
- •12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- •12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- •12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- •12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- •12.6.2. Насыщение
- •13.1. Водные фазы
- •13.2. Эволюция осморегуляции
- •13.3. Выделительные органы беспозвоночных животных различных типов
- •13.4. Почка позвоночных животных
- •13.5. Структура и функции почки млекопитающих
- •13.6.2. Клубочковая фильтрация
- •13.6.3. Реабсорбция в канальцах
- •13.6.5. Синтез веществ в почке
- •13.6.6. Осмотическое разведение и концентрирование мочи
- •13.6.7. Роль почек в осморегуляции и волюморегуляции
- •13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- •13.6.9. Экскреторная функция почки
- •13.7. Нервная регуляция деятельности почки
- •13.8. Инкреторная функция почки
- •13.9. Метаболическая функция почки
- •13.10. Выделение мочи
- •14.2. Мужские половые органы
- •14.4. Половое созревание
- •14.5. Половое влечение
- •14.6. Половой акт
- •14.7. Половая жизнь
- •1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- •14.8.2. Половые рефлексы у женщин
- •14.9. Половой цикл
- •14.10. Оплодотворение
- •14.11. Беременность
- •14.11.1. Плацента
- •14.11.2. Плод
- •14.11.3. Состояние организма матери при беременности
- •14.11.4. Многоплодная беременность
- •14.11.5. Латентная стадия беременности
- •14.11.6. Беременность у животных
- •14.12. Роды
- •14.13.2. Физиология органов размножения самок
- •14.13.3. Инкубация
- •14.14. Лактация
- •15.2. Проявления старения
- •15.3. Профилактика старения
8. 2. Механизмы неспецифического (врожденного) иммунитета
Неспецифические (врожденные) защитные механизмы представляют собой совокупность всех физиологических факторов, способных а) предотвратить попадание в организм или б) нейтрализовать и разрушать проникшие в него чужеродные вещества и частицы или образовавшиеся в нем собственные измененные клетки. Эти механизмы не обладают специфичностью в отношении воздействующего агента.
Помимо упоминавшихся механических и химических факторов существует несколько других способов защиты: фагоцитоз ("поедание" клетками), внеклеточное уничтожение зараженных вирусами и опухолевых клеток с помощью цитотоксических факторов (клеточная цитотоксичностъ) и разрушение чужеродных клеток с помощью растворимых бактерицидных соединений.
8.2.1. Фагоцитоз
Фагоцитоз представляет собой филогенетически наиболее древнюю иммунную реакцию и является первой реакцией иммунной системы на внедрение чужеродных антигенов, которые могут поступать в организм в составе бактериальных клеток или вирусных частиц, а также в виде высокомолекулярного белка или полисахарида. Макрофаги и моноциты - древние клетки иммунной системы. Последние являются циркулирующими в периферической крови предшественниками макрофагов, функции которых разнообразны и не исчерпываются потребностями иммунной защиты организма.
Впервые на защитную функцию макрофагов указал И. И. Мечников, открывший явление фагоцитоза и получивший за это Нобелевскую премию 1908 г. В настоящее время известна другая фундаментальная роль макрофагов - представление этими клетками антигенов лимфоцитам. Без этой функции макрофагов невозможно специфическое распознавание чужеродного антигена. Кроме того, макрофаги являются продуцентами многочисленных медиаторов иммунных реакций (интерлейкины, простагландины), а также белков системы комплемента.
Основой эволюционного становления фагоцитоза как иммунологического феномена явилась пищеварительная функция. Предковые одноклеточные организмы поглощали и переваривали чужеродные вещества внешней среды с целью питания. Такой тип питания сохранился у современных протозоа, губок и кишечнополостных. Источником питания, возможно, служили не только неструктурированные вещества, но и прокариоты, среди которых встречается много патогенных микроорганизмов. Несмотря на совершенствование в филогенезе механизмов специфической иммунной защиты, фагоцитарная функция амебоцитов-макрофагов сохранилась в эволюции от одноклеточных до высших многоклеточных, включая млекопитающих.
Моноциты. Основой всей моноцитарно-фагоцитарной системы (МФС) является популяция иммунокомпетентных клеток - моноциты. В периферической крови человека в нормальных условиях содержится обычно 0,2-0,8 • 109 этих клеток в 1 л. После недолгого пребывания в крови моноциты мигрируют в ткани, где формируют МФС. Моноциты присутствуют повсюду - в соединительной ткани, вокруг базальных мембран мелких кровеносных сосудов, высокое содержание их обнаруживается в легких (альвеолярные макрофаги) и печени (клетки Купфера). Макрофаги выстилают синусоиды селезенки и медуллярные
Рис. 8.6 Основные фазы фагоцитоза (1-8) и уничтожение бактерии
синусы лимфатических узлов. Моноцитарное происхождение имеют мезангиальные клетки почечных клубочков, микроглиальные клетки мозга и остеокласты костной ткани. Моноциты, как правило, мигрируют в ткани диффузно, хаотично. В случае появления клеток, несущих чужеродную информацию, возникает хемотаксический сигнал, направляющий и ускоряющий движение моноцитов из кровотока и окружающих тканей. Макрофаги и некоторые другие клетки МФС живут около 2 месяцев, а некоторые субпопуляции - многие годы. Полагают, что именно этими долгоживущими клетками определяется пожизненная фиксация татуировки и "черное легкое" курильщиков. Внесосудистый пул клеток МФС превышает пул моноцитов циркулирующих в крови, примерно в 25 раз. Наиболее богаты ими печень, легкие, селезенка. Во многих тканях (например, в мышечных) плотность расположения макрофагов исключительно низка.
Механизм фагоцитоза однотипен и включает 8 последовательных фаз (рис. 8.6): 1) хемотаксис (направленное движение фагоцита к объекту), 2) адгезия (прикрепление к объекту), 3) активация мембраны (актин-миозиновой системы фагоцита), 4) начало собственно фагоцитоза, связанное с образованием вокруг поглощаемой частицы псевдоподий, 5) образование фагосомы (поглощаемая частица оказывается заключенной в вакуоль благодаря надвиганию на нее плазматической мембраны фагоцита подобно застежке-молнии, 6) слияние фагосомы с лизосомами, 7) уничтожение и переваривание, 8) выброс продуктов деградации из клетки.
Фагоцитозу часто предшествует процесс опсонизации (от греч. opsoniazo - снабжать пищей, питать) объекта (клетки, несущей чужеродную информацию). Инициатором этого процесса является образование на поверхности клетки комплекса антиген-антитело. Опсонизация обеспечивается присутствием небольшого количества в организме молекул антител ("нормальные антитела"). Антитела, локализующиеся на поверхности чужеродной клетки, стимулируют активацию и присоединение к ним белков системы комплемента. Образовавшийся комплекс действует как активатор остальных стадий фагоцитоза, стимулирует прямо или через посредство других клеток образование веществ, усиливающих эффект опсонизации чужеродной клетки.
Хемотаксис. Чужеродные клетки (опсонизированные или неопсонизированные) посылают в окружающую среду хемотаксические сигналы, в направлении которых фагоцит начинает двигаться. В качестве хемотаксических факторов рассматривается целый ряд веществ, в том числе продукты метаболизма микроорганизмов. Считается, что на ранних этапах эволюции каждый из этих факторов действовал самостоятельно. У высших организмов, в том числе у человека, все они действуют в комплексе, последовательно включаясь и усиливая друг друга. Пусковым фактором является комплекс антиген-антитело, определяющий высокую специфичность суммарного хемотаксического сигнала. На этот сигнал приходят первые фагоцитирующие элементы, которые, активируя другие иммунокомпетентные клетки, стимулируют их к выработке медиаторов, усиливающих хемотаксис. Далее хемотаксический потенциал усиливается за счет новообразованных антител, усиления образования комплексов антиген-антитело, а также ряда факторов, образующихся при разрушении макрофагами сосудов и тканей в воспалительном очаге. Этот хемотаксический сигнал второго порядка (развитого очага воспаления) обеспечивает поддержание в нем активной работы за счет поступления новых порций иммунокомпетентных клеток. Достигнув очага воспаления, макрофаг останавливается под влиянием фактора торможения миграции лейкоцитов, вырабатываемого Т-лимфоцитами-хелперами. Исчезновение в очаге воспаления чужеродных антигенов, начало процессов регенерации ведет к резкому уменьшению хемотаксического стимула и появлению продуктов, представляющих собой отрицательный хемотаксический сигнал. В результате этого новые фагоциты перестают мигрировать в воспалительный очаг, а оставшиеся жизнеспособные рассеиваются по всей ткани.
Адгезия. Акт адгезии включает две фазы: распознавание чужеродного (специфический процесс) и прикрепление, или собственно адгезию (неспецифический процесс). Адгезия фагоцитирующей клетки к объекту фагоцитоза происходит крайне медленно в том случае, если отсутствует предварительное специфическое распознавание чужеродных клеток. У высших организмов адгезия практически всегда идет с включением специфического компонента. Для активации этого процесса необходимо небольшое количество иммуноглобулинов, которые постоянно присутствуют в организме как нормальные антитела.
Захват (собственно фагоцитоз). Важная роль в осуществлении этого этапа фагоцитоза принадлежит специфическим компонентам иммунной реакции. Известно, что захват неопсонизированных частиц идет медленно, причем часть из них вообще не фагоцитируется. Наиболее сильными опсонинами являются иммуноглобулины. Специфичность в осуществлении фагоцитоза появляется в ходе эволюции как надстройка, физиологически связанная с уже имеющейся иммунной системой. В процессе фагоцитоза плазматическая мембрана макрофага при помощи образованных ею выступающих складок захватывает объект фагоцитоза и обволакивает его. Образующаяся при этом небольшая вакуоль называется фагосомой. В дальнейшем фагосома отрывается от поверхности мембраны и перемещается в цитоплазму.
Киллинг (убийство). В фагосоме захваченная чужеродная клетка гибнет. Для осуществления киллинга макрофаг продуцирует и секретирует в фагосому реакционноспособные производные кислорода.
Переваривание. Последний этап фагоцитоза - переваривание захваченного и убитого материала. Для этого с фагосомой, содержащей объект фагоцитоза, объединяются лизосомы, которые содержат более 25 различных ферментов, в число которых входит большое количество гидролитических энзимов. В фагосоме происходит активация всех этих ферментов, так называемый метаболический взрыв, в результате которого фагоцитированный объект переваривается. Часть молекул антигена при этом разрушается не полностью, их антигенная активность может существенно возрастать. Далее фагосома с остаточным антигеном выбрасывается на поверхность клетки, высвобождая иммуногенный антиген, что имеет важное значение для индукции лимфоцитами специфического иммунного ответа.
Нейтрофилы. Главный барьер против микробных инфекций представляют нейтрофилы - популяция лейкоцитов, иначе называемая микрофагами, или микрофагоцитами. Они имеют много общего с другими форменными элементами крови гемопоэтического стволового предшественника. В крови человека нейтрофилы доминируют среди остальных лейкоцитов. Они представляют собой неделящиеся короткоживущие клетки с сегментированным (более зрелые сегментоядерные нейтрофилы) и несегментированным (менее зрелые палочкоядерные нейтрофилы) ядром и набором гранул, различающихся по морфологии, гистогенезу, биохимическому составу, плотности и скорости функциональной мобилизации. Примерно 70% нейтрофилов не циркулируют в крови, а прикреплены к эндотелию сосудов. Главный резервуар пристеночных нейтрофилов - микрососуды легких: число депонированных здесь клеток в несколько раз превосходит количество циркулирующих нейтрофилов.
Срок пребывания нейтрофилов в кровотоке составляет около 6,5 ч. Далее нейтрофилы, проникая через эндотелий сосудов, попадают в ткани, где и заканчивают свое существование в течение 3-5 сут, осуществляя свои эффекторные функции, очень похожие на те, которые присущи макрофагам. Значительная часть нейтрофилов приходит к эпителию слизистых оболочек и, проникая через него, заканчивает свой жизненный цикл в слизистом надэпителиальном слое (срок жизни таких нейтрофилов исчисляется часами).
У нейтрофилов известны три типа гранул: первичные азурофильные гранулы, содержащие миелопероксидазу, небольшое количество лизоцима и набор катионных белков; вторичные "специфические" гранулы, содержащие лактоферрин, лизоцим и белок, связывающий витамин B12; третичные гранулы (мельчайшие гранулы, или С-частицы), содержащие кислые гидролазы, а также практически всю желатиназную активность нейтрофила. Дегрануляция нейтрофилов может быть истинной, когда гранулы целиком выталкиваются из клетки (экзоцитоз), но чаще из гранул выделяются только растворимые компоненты и имеет место вторичное запустевание гранул (так называемая секреторная дегрануляция). Обширные запасы гликогена, который может быть использован при гликолизе, позволяют нейтрофилам существовать в анаэробных условиях.
Основной функцией нейтрофилов является уничтожение чужеродных клеток или веществ биополимерной природы путем фагоцитоза. Эту функцию нейтрофилы осуществляют только после выхода их из сосудистого пула. Процесс фагоцитоза, осуществляемого нейтрофилами, состоит из тех же самых этапов, которые выше описаны для макрофагов. В отличие от макрофагов, нейтрофилы могут фагоцитировать чужеродную клетку или частицу только один раз, после чего они гибнут.
Хемотаксис нейтрофилов обусловлен в основном продуктами жизнедеятельности бактерий или денатурированными белками разрушенных клеток собственного организма, т. е. в определенной степени эта стадия фагоцитоза является специфичной. Суммарный хемотаксический эффект усиливается многочисленными факторами разнообразной природы, активирующимися в начале разрушения чужеродного. Сам нейтрофил, будучи активированным в начале фагоцитоза, также выделяет ряд хемотаксических факторов. Благодаря каскадному усилению хемотаксического сигнала к месту разрушения объекта фагоцитоза привлекается большое количество нейтрофилов.
Уничтожение чужеродных клеток фагоцитами (макрофагами и нейтрофилами). Антигенная стимуляция резко меняет метаболический профиль фагоцитирующих клеток. К наиболее выраженным сдвигам относится резкое увеличение потребления глюкозы в реакциях гексозомонофосфатного шунта (ГМФШ), генерирующего НАДФ • Н для восстановления молекулярного кислорода на мембранах цитохрома b-245. Если в покоящемся нейтрофиле подобным образом утилизируются лишь 1-2% глюкозы, то стимулированный нейтрофил способен окислить до 30% глюкозы. Одновременно возрастает потребление кислорода и образование оксидантов с мощным энергетическим потенциалом. Этот процесс
называют респираторным взрывом.
В результате респираторного взрыва образуются мощные бактерицидные агенты: супероксидный анион (О2-), перекись водорода H202), синглетный кислород (1O2), гидроксильные радикалы (ОН-). Сочетание перекиси водорода, миелопероксидазы и ионов галогенов создает мощную систему галогенирования, приводящую к появлению крайне агрессивных вторичных метаболитов: гипохлорной кислоты (НОСl), хлорамина, продуктов перекисного окисления липидов (ПОЛ). Ключевым считается супероксидный анион, с которого берет начало каскад активных форм кислорода и сопряженных с ним феноменов. Избыток энергии реализуется путем выделения тепла, повышенной химической активностью (отсюда высокая биопидность), либо эмиссией квантов света (хемилюминесценция).
Кислороднезависимые механизмы. При дисмутации супероксидного аниона потребляются ионы водорода и слегка повышается рН, это создает оптимальные условия для функционирования семейства катионных белков. Эти белки, имеющие высокую изоэлектрическую точку, разрушают бактериальную стенку за счет протеиназного эффекта и за счет непосредственного присоединения к поверхности микроорганизма. Низкие значения рН, устанавливающиеся после слияния фагосомы с лизосомами, лизоцим и лактоферрин представляют собой Кислороднезависимые бактерицидные и бактериостатические факторы, которые могут действовать в анаэробных условиях. Убитые микроорганизмы расщепляются гидролитическими ферментами, и продукты деградации высвобождаются из фагоцитарной клетки.
Разные формы реактивности фагоцитов обеспечиваются и проявляются нередко независимо друг от друга. При хроническом грануломатозе макрофаги и нейтрофилы в связи с дефектом цитохромов b-245 не способны образовывать активные метаболиты кислорода. Это сопровождается тем, что бактерии фагоцитируются, но не уничтожаются в клетках. Кроме того, известно, что многие микроорганизмы содержат в большом количестве каталазу и могут легко инактивировать продуцируемую фагоцитами перекись водорода. Фагоциты, дефектные по глюкозо-6-фосфатдегидрогеназе, не способны продуцировать активные метаболиты кислорода и защищать организм от бактериальных инфекций. При синдроме "ленивых лейкоцитов" нарушена реакция нейтрофилов на хемотаксические сигналы.
