- •1.1. Общая физиология нервной системы
- •1.1.1. Основные типы строения нервной системы
- •1.1.2. Мембранные потенциалы нервных элементов
- •1.1.3. Потенциалы и трансмембранные токи при возбуждении
- •1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- •1.1.5. Межклеточные пространства в нервной системе
- •1.1.6. Аксонный транспорт
- •1.1.7. Физиология синапсов
- •1.1.8. Нервные сети и основные законы их функционирования
- •1.1.9. Рефлексы и рефлекторные дуги
- •1.1.10. Элементы эволюции нервной системы
- •1.2. Общая физиология мышц
- •1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- •1.2.2. Механизм мышечного возбуждения
- •1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- •1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- •1.2.5. Механика мышцы
- •1.2.6. Энергетика мышцы
- •1.2.7. Особенности мышцы сердца позвоночных животных
- •1.2.8. Общая физиология гладких мышц позвоночных животных
- •1.2.9. Характеристика некоторых мышц беспозвоночных животных
- •1.2.10. Элементы эволюции мышц
- •1.2.11. Электрические органы рыб
- •1.2.12. Немышечные формы двигательной активности
- •1.3. Физиология секреторной клетки
- •1.3.1. Поступление предшественников секрета в клетку
- •1.3.2. Выведение веществ из клетки
- •2.1. Совершенствование регуляторных механизмов в процессе эволюции
- •2.2. Характеристика гуморальных механизмов регуляции
- •2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- •2.2.2. Регуляция функций эндокринной системы
- •2.2.3. Функциональное значение гормонов
- •2.2.4. Механизм действия гормонов
- •2.2.5. Классификация гормонов
- •2.3. Единство нервных и гуморальных механизмов регуляции
- •2.3.1. Саморегуляция функций организма
- •2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- •2.3.3. Рефлекторный принцип регуляции функций
- •2.4. Общие черты компенсаторно-приспособительных реакций организма
- •3.1.2. Нервная система позвоночных животных
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо-гипофизарная система
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- •3.14.2. Сон как форма приобретенного поведения
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17.2. Высшие интегративные системы мозга
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека-оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •4.1.2. Преобразование сигналов в рецепторах
- •4.1.3. Адаптация рецепторов
- •4.1.4. Сенсорные пути
- •4.1.5. Сенсорное кодирование
- •4.2. Соматическая сенсорная система
- •4.2.1. Соматическая сенсорная система беспозвоночных животных
- •4.2.2. Соматическая сенсорная система позвоночных животных
- •4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- •4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- •4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- •4.4. Сенсорная система боковой линии
- •4.4.2. Электрорецепторы
- •4.4.3. Восходящие пути
- •4.5. Гравитационная сенсорная система
- •4.5.1. Гравитационная сенсорная система беспозвоночных животных
- •4.5.2. Гравитационная сенсорная система позвоночных животных
- •4.6. Слуховая сенсорная система
- •4.6.1. Физические характеристики звуковых сигналов
- •4.6.2. Слуховая сенсорная система беспозвоночных животных
- •4.6.3. Слуховая сенсорная система позвоночных животных
- •4.6.4. Эхолокация
- •4.7. Хеморецепторные сенсорные системы
- •4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- •4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- •4.8. Зрительная сенсорная система
- •4.8.1. Организация фоторецепторов
- •4.8.2. Механизмы фоторецепции
- •4.8.3. Зрительная сенсорная система беспозвоночных животных
- •4.8.4. Зрительная сенсорная система позвоночных животных
- •5.1. Дуга автономного рефлекса
- •5.1.1. Подразделение автономной нервной системы
- •5.1.2. Анатомические структуры
- •5.1.4. Различия в конструкции автономной и соматической нервной системы
- •5.1.5. Чувствительное звено дуги автономного рефлекса
- •5.1.6. Ассоциативное (вставочное) звено
- •5.1.7. Эфферентное звено
- •5.2. Синаптическая передача
- •5.2.1. Ацетилхолин
- •5.2.2. Норадреналин и адреналин
- •5.2.3. Трансдукторы
- •5.2.4. Серотонин
- •5.2.5. Аденозинтрифосфат (атф)
- •5.2.6. Вероятные кандидаты в медиаторы
- •5.2.7. Активные факторы
- •5.3.2. Аксон-рефлекс
- •5.3.3. Висцеросоматический рефлекс
- •5.3.4. Висцеросенсорный рефлекс
- •5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- •5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- •5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- •5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- •5.4.4. Тоническая активность
- •5.5.2. Стволовые центры
- •5.5.3. Гипоталамические центры
- •5.5.4. Лимбическая система
- •5.5.5. Мозжечок
- •5.5.6. Ретикулярная формация
- •5.5.7. Кора больших полушарий
- •6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- •6.1.1. Методы изучения функций желез внутренней секреции
- •6.1.2. Понятие о нейросекреции
- •6.2.1. Гипоталамо-нейрогипофизарная система
- •6.2.2. Гипоталамо-аденогипофизарная система
- •6.2.3. Гипофиз
- •6.2.4. Шишковидное тело
- •6.3.2. Надпочечник и его гормоны
- •6.3.3. Гонады и половые гормоны
- •6.4.2. Гормональная регуляция водно-солевого гомеостаза
- •6.5. Поджелудочная железа и ее гормоны
- •6.6. Гормоны пищеварительного тракта
- •6.7. Гормоны сердечно-сосудистой системы
- •6.7.1. Гормоны сердца
- •6.7.2. Гормоны эндотелия
- •6.8. Гормоны плазмы и клеток крови
- •6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- •6.10. Рецепторы гормонов
- •7.1. Эволюция внутренней среды организма
- •7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- •7.3. Понятие о системе крови
- •7.3.1. Основные функции крови
- •7.3.2. Объем и состав крови
- •7.3.3. Физико-химические свойства крови
- •7.4. Плазма крови
- •5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- •7.5. Форменные элементы крови
- •7.5.1. Эритроциты
- •7.5.2. Пигменты крови
- •7.5.3.Скорость оседания эритроцитов (соэ)
- •7.5.4. Лейкоциты
- •7.5.5. Тромбоциты
- •7.6. Гемостаз (остановка кровотечения)
- •7.6.1. Свертывание крови
- •7.6.3. Противосвертывающие механизмы
- •7.7. Группы крови
- •7.7.2. Резус-фактор
- •7.8. Кроветворение и его регуляция
- •7.8.1. Эритропоэз
- •7.8.2. Лейкопоэз. Тромбоцитопоэз
- •7.9. Лимфа
- •8.1. Компоненты иммунной системы
- •8. 2. Механизмы неспецифического (врожденного) иммунитета
- •8.2.1. Фагоцитоз
- •8.2.2. Внеклеточное уничтожение (цитотоксичность)
- •8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- •8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- •8.3. Механизмы специфического приобретенного иммунитета
- •8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- •8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- •8.4.2. Участие цитокинов в регуляции иммунных реакций
- •8.4.4. Регуляторные иммунонейроэндокринные сети
- •9.2. Функции сердца
- •9.2.1. Общие принципы строения
- •9.2.2. Свойства сердечной мышцы
- •9.2.3. Механическая работа сердца
- •9.2.4. Тоны сердца
- •9.2.5. Основные показатели деятельности сердца
- •9.4. Регуляция работы сердца
- •9.4.1. Внутриклеточная регуляция
- •9.4.2. Межклеточная регуляция
- •9.4.3. Внутрисердечная нервная регуляция
- •9.4.4. Экстракардиальная нервная регуляция
- •9.4.5. Гуморальная регуляция
- •9.4.6. Тонус сердечных нервов
- •9.4.7. Гипоталамическая регуляция
- •9.4.8. Корковая регуляция
- •9.4.9. Рефлекторная регуляция
- •9.4.10. Эндокринная функция сердца
- •9.5. Сосудистая система
- •9.5.1. Эволюция сосудистой системы
- •9.5.2. Функциональные типы сосудов.
- •9.5.3. Основные законы гемодинамики
- •9.5.4. Давление в артериальном русле
- •9.5.5. Артериальный пульс
- •9.5.6. Капиллярный кровоток
- •9.5.7. Кровообращение в венах
- •9.6. Регуляция кровообращения
- •9.6.1. Местные механизмы регуляции кровообращения
- •9.6.2. Нейрогуморальная регуляция системного кровообращения
- •9.7. Кровяное депо
- •9.8.2. Мозговое кровообращение
- •9.8.3. Легочное кровообращение
- •9.8.4. Кровообращение в печени
- •9.8.5. Почечное кровообращение
- •9.8.6. Кровообращение в селезенке
- •9.9. Кровообращение плода
- •9.10.3. Состав, свойства, количество лимфы
- •9.10.4. Лимфообразование
- •9.10.5. Лимфоотток
- •10.1. Эволюция типов дыхания
- •10.1.1. Дыхание беспозвоночных животных
- •10.1.2. Дыхание позвоночных животных
- •10.2. Дыхательный акт и вентиляция легких
- •10.2.1. Дыхательные мышцы
- •10.2.2. Дыхательный акт
- •10.2.3. Вентиляция легких и внутрилегочный объем газов
- •10.2.4. Соотношение вентиляции и перфузии легких
- •10.2.5. Паттерны дыхания
- •10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- •10.3.2. Транспорт кислорода кровью
- •10.3.3. Транспорт углекислого газа кровью
- •10.3.4. Транспорт кислорода и углекислого газа в тканях
- •10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- •10.4.3. Механорецепторы дыхательной системы
- •10.4.4. Роль надмостовых структур
- •10.5.2. Влияние уровня бодрствования
- •10.5.3. Эмоциональные и стрессорные факторы
- •10.5.4. Мышечная деятельность
- •11.1. Источники энергии и пути ее превращения в организме
- •11.1.1. Единицы измерения энергии
- •11.1.3.Методы исследования обмена энергии
- •11.1.4. Основной обмен
- •11.1.5. Обмен в покое и при мышечной работе
- •11.1.7. Запасы энергии
- •11.2. Питание
- •11.2.1. Потребность в пище и рациональное питание
- •11.2.2. Потребность в воде
- •11.2.3. Потребность в минеральных веществах
- •11.2.4. Потребность в углеводах
- •11.2.5. Потребность в липидах
- •11.2.6. Потребность в белках
- •11.2.7. Потребность в витаминах
- •11.2.8. Потребность в пищевых волокнах
- •11.3. Терморегуляция
- •11.3.1. Пойкилотермия и гомойотермия
- •11.3.2. Температура тела
- •11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- •11.3.4. Центральные (мозговые) механизмы терморегуляции
- •11.3.5. Теплопродукция
- •11.3.6. Теплоотдача
- •11.3.9. Тепловая и холодовая адаптация
- •11.3.10. Сезонная спячка
- •11.3.11. Онтогенез терморегуляции
- •11.3.12. Лихорадка
- •12.1.2. Регуляторная часть пищеварительной системы
- •12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- •12.1.4. Типы пищеварения
- •12.2. Секреторная функция
- •12.2.1. Слюнные железы
- •12.2.2. Железы желудка
- •12.2.3. Поджелудочная железа
- •12.2.4. Желчеотделение и желчевыделение
- •12.2.5. Секреция кишечных желез
- •12.3. Переваривание пищевых веществ
- •12.4. Мембранное пищеварение и всасывание
- •12.4.2. Всасывание
- •12.5. Моторная функция
- •12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- •12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- •12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- •12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- •12.6.2. Насыщение
- •13.1. Водные фазы
- •13.2. Эволюция осморегуляции
- •13.3. Выделительные органы беспозвоночных животных различных типов
- •13.4. Почка позвоночных животных
- •13.5. Структура и функции почки млекопитающих
- •13.6.2. Клубочковая фильтрация
- •13.6.3. Реабсорбция в канальцах
- •13.6.5. Синтез веществ в почке
- •13.6.6. Осмотическое разведение и концентрирование мочи
- •13.6.7. Роль почек в осморегуляции и волюморегуляции
- •13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- •13.6.9. Экскреторная функция почки
- •13.7. Нервная регуляция деятельности почки
- •13.8. Инкреторная функция почки
- •13.9. Метаболическая функция почки
- •13.10. Выделение мочи
- •14.2. Мужские половые органы
- •14.4. Половое созревание
- •14.5. Половое влечение
- •14.6. Половой акт
- •14.7. Половая жизнь
- •1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- •14.8.2. Половые рефлексы у женщин
- •14.9. Половой цикл
- •14.10. Оплодотворение
- •14.11. Беременность
- •14.11.1. Плацента
- •14.11.2. Плод
- •14.11.3. Состояние организма матери при беременности
- •14.11.4. Многоплодная беременность
- •14.11.5. Латентная стадия беременности
- •14.11.6. Беременность у животных
- •14.12. Роды
- •14.13.2. Физиология органов размножения самок
- •14.13.3. Инкубация
- •14.14. Лактация
- •15.2. Проявления старения
- •15.3. Профилактика старения
8.1. Компоненты иммунной системы
К основным клеточным иммунным компонентам относятся все лейкоциты крови, представляющие собой так называемые иммунокомпетентные клетки. Зрелые лейкоциты объединяют пять популяций клеток:
лимфоциты, моноциты, нейтрофилы, эозинофилы и базофилы. Иммунокомпетентные клетки можно обнаружить практически в любой части организма, однако сконцентрированы они преимущественно в местах своего образования первичных и вторичных лимфоидных органах (рис. 8.1). Первичным местом образования всех этих клеток является орган кроветворения - красный костный мозг, в синусах которого образуются и проходят полный цикл дифференцировки моноциты и все гранулоциты (нейтрофилы, эозинофилы, базофилы). Здесь же начинается дифференцировка лимфоцитов. Лейкоциты всех популяций происходят от единой костномозговой полипотентной стволовой кроветворной клетки, пул которой является самоподдерживающимся (рис. 8.2).
Различные направления дифференцировки стволовых клеток определяются специфическим микроокружением их в очагах костномозгового кроветворения и продукцией специфических гемопоэтических факторов, в том числе колониестимулирующих, кейлонов, простагландинов и других. Помимо указанных факторов, в систему контроля за образованием и дифференцировкой иммунокомпетентных клеток в костном мозге входит группа общеорганизменных регуляторных веществ, важнейшими из которых являются гормоны и медиаторы нервной системы.
Лимфоциты в организме представлены двумя большими субпопуляциями, которые различаются по гистогенезу и иммунным функциям. Это Т-лимфоциты, обеспечивающие клеточный иммунитет, и В-лимфоциты, ответственные за
осуществление антителообразования, т. е. гуморального иммунитета. Если В-лимфоциты весь цикл дифференцировки до зрелых В-клеток проходят в костном мозге, то Т-лимфоциты на стадии пре-Т-лимфоцитов мигрируют из него по кровотоку в другой первичный лимфоидный орган - тимус, в котором заканчивается их дифференцировка с образованием всех клеточных форм зрелых Т-клеток.
Принципиально отличается от них особая субпопуляция лимфоцитов - нормальные (естественные) киллеры (НК) и К-клетки. НК являются цитотоксическими клетками, осуществляющими разрушение клеток-мишеней (главным образом, опухолевых клеток и клеток, зараженных вирусами) без предварительной иммунизации, т. е. в отсутствие антител. К-клетки способны разрушать клетки-мишени, покрытые небольшим количеством антител.
После созревания иммунокомпетентные клетки, выходят в кровоток, по которому моноциты и гранулоциты мигрируют в ткани, а лимфоциты направляются во вторичные лимфоидные органы, где происходит антигензависимая фаза их дифференцировки. Кровеносная система - основная магистраль транспорта и рециркуляции иммунных компонентов, в том числе иммунокомпетентных клеток. В крови, как правило, не происходит никаких иммунологических реакций. Кровоток только доставляет клетки к месту их функционирования.
Гранулоциты (нейтрофилы, эозинофилы, базофилы) после созревания в костном мозге выполняют лишь эффекторную функцию, после однократного выполнения которой они гибнут. Моноциты после созревания в костном мозгу оседают в тканях, где образовавшиеся из них тканевые макрофаги также выполняют эффекторную функцию, но в течение длительного периода и многократно. В отличие от всех других клеток, лимфоциты после созревания их в костном мозгу (В-клетки) или тимусе (Т-клетки) поступают во вторичные лимфоидные органы (рис. 8.3), где
Рис. 8.1 Лимфомиелоидный комплекс
КМ - костный мозг; КС - кровеносные сосуды; ЛТК - лимфоидная ткань кишки; ЛС - лимфатические сосуды; ЛУ - лимфатические узлы; СЛ - селезенка; Т - вилочковая железа (тимус).
Рис. 8.2 Полипотентная стволовая кроветворная клетка и ее потомки ЦТЛ - цитотоксический Т-лимфоцит (Т-киллер).
Рис. 8.3 Схема образования Т- и В-лимфоцитов и их участия в клеточном и гуморальном иммунитете
основной их функцией является размножение в ответ на антигенный стимул с появлением короткоживущих специфических эффекторных клеток и долгоживущих клеток памяти. 'Иммунологическая память - способность организма отвечать на повторное введение антигена иммунной реакцией, характеризующейся большей силой и более быстрым ответом, чем на первую иммунизацию.
Вторичные лимфоидные органы разбросаны по всему организму, чтобы обслуживать все ткани и участки поверхности. К вторичным лимфоидным органам относятся селезенка, лимфатические узлы, органные скопления лимфоидной ткани у слизистых оболочек - червеобразный отросток (аппендикс), пейеровы бляшки, миндалины и другие образования глоточного лимфоидного кольца солитарные (одиночные) .лимфоидные фолликулы стенок кишки и влагалища, а также диффузные скопления лимфоидных клеток в субэпителиальных пространствах всех слизистых оболочек организма и новообразованные очаги лимфоидной ткани в грануляционной ткани вокруг хронических очагов воспаления.
Во вторичных лимфоидных органах Т- и В-лимфоциты впервые контактируют с чужеродными для организма антигенами. Такой контакт осуществляется преимущественно в лимфоидной ткани, по месту поступления антигена. После контакта происходит размножение клонов (от греч. klon - росток, отпрыск) Т- и В-клеток, специфичных к данному антигену, и дифференцировка большей части клеток этих клонов в конечные эффекторные короткоживущие (Т-эффекторы из Т-лимфоцитов и плазматические клетки из В-лимфоцитов). Часть Т- и В-лимфоцитов этих специфических к антигену клонов размножается, не переходя в короткоживущие эффекторные клоны, и превращается в клетки иммунологической памяти. Последние частично мигрируют в другие вторичные лимфоидные органы, в результате чего в них возникает повышенный уровень лимфоцитов, специфичных к антигену, атаке которого организм подвергся хотя бы один раз. Благодаря этому создается иммунологическая память на конкретный антиген во всей иммунной системе.
Поступление лимфоцитов из кровотока во вторичные лимфоидные органы жестко контролируется. Существенная часть зрелых Т- и В-лимфоцитов постоянно циркулирует в кровотоке между лимфоидными органами (так называемые рециркулирующие лимфоциты). Под рециркуляцией лимфоцитов понимают процесс миграции лимфоцитов из крови в органы иммунной системы, периферические ткани и обратно в кровь (рис. 8.4). Лишь небольшая часть лимфоцитов относится к нерециркулирующему пулу.
Функциональное назначение рециркуляции лимфоцитов состоит в осуществлении постоянного "иммунного надзора" тканей организма иммунокомпетентными лимфоцитами, в эффективном обнаружении чужеродных и измененных собственных антигенов и снабжении органов лимфоцитопоэза информацией о появлении антигенов в различных тканях. Различают быструю рециркуляцию (осуществляется в течение нескольких часов) и медленную (длится неделями). В ходе быстрой рециркуляции лимфоциты крови специфически связываются со стенкой специализированных сосудов, расположенных в лимфоидных органах, - посткапиллярных венул с высоким эндотелием - и далее мигрируют через эти эндотелиальные клетки в лимфоидную ткань, затем в лимфатические сосуды и через грудной лимфатический проток возвращаются в кровь. Этим путем мигрирует около 90% лимфоцитов, имеющихся в лимфе грудного протока. При медленной рециркуляции лимфоциты крови мигрируют через посткапиллярные венулы с плоским эндотелием, характерные для неиммунных органов, в различные периферические ткани, затем попадают в лимфатические сосуды, лимфатические узлы и через лимфоток в грудной лимфатический проток снова в кровь. Таким путем рециркулирует примерно 5-10% лимфоцитов, содержащихся в лимфе грудного протока.
Специфическое связывание лимфоцитов со стенками посткапиллярных венул с высоким эндотелием происходит благодаря наличию на поверхности эндотелиальных клеток определенных молекул и соответствующих им рецепторов на Т- и В-лимфоцитах (рис. 8.5). Этот механизм обеспечивает избирательное накопление в лимфоузлах и других вторичных лимфоидных органах лимфоцитов определенных популяций. В пейеровых бляшках содержится около 70% В-лимфоцитов и 10-20% Т-лимфоцитов, в то же время в периферических лимфоузлах, наоборот, около 70% Т- и 20% В-клеток. Многие Т- и В-лимфоциты, активированные антигеном, покидают место, где они были активированы, а затем после циркуляции в кровотоке возвращаются в те же или близкие к ним лимфоидные органы. Такая закономерность лежит в основе местного иммунитета органов и тканей. Среди рециркулирующих лимфоцитов большей
Рис. 8.4 Пути рециркуляции лимфоцитов
Белые стрелки - быстрая рециркуляция. Черные стрелки - медленная рециркуляция. ВЛС - выносящий лимфатический сосуд; ГП - грудной лимфатический проток; КС - кровеносный сосуд; ПКВ - посткапиллярные венулы с высоким эндотелием;
ПЛС - приносящий лимфатический сосуд, ЛС - лимфатический сосуд.
Рис. 8.5 Гипотетическая модель механизмов, обеспечивающих органную специфичность миграции лимфоцитов
Заселенность определенных органов теми или иными субпопуляциями лимфоцитов регулируется процессами избирательного узнавания посткапиллярных венул с высоким эндотелием.
скоростью миграции обладают Т-лимфоциты и клетки иммунологической памяти обоих типов.
Непосредственное участие в иммунной защите принимают также клетки кожного и слизистого покровов, создающие механический барьер на пути чужеродного антигена. В качестве механических факторов неспецифических защитных механизмов можно рассматривать слущивание (десквамацию) клеток поверхностных слоев многослойных эпителиев, выработку слизи, покрывающей слизистые оболочки, биение ресничек, осуществляющее транспорт слизи по поверхности эпителия (в респираторном тракте - мукоцилиарный транспорт). Микробы удаляются с поверхности эпителиев также током слюны, слез мочи и других жидкостей.
В осуществлении защиты организма от внедрения чужеродных клеток участвуют клетки, синтезирующие разнообразные иммунологически активные вещества (например, клетки сальных желез вырабатывают жирные кислоты клетки потовых желез - молочную кислоту, низкое значение рН которой обеспечивает антимикробное действие). Во многих секретах, продуцируемых клетками организма, содержатся бактерицидные компоненты, такие как соляная кислота в желудочном соке, спермин и цинк в сперме, лактопероксидаза в молоке, лизоцим в слезах, носовых выделениях и слюне. Известен также механизм микробного антагонизма, сущность которого состоит в том, что нормальная бактериальная флора человека может угнетать рост многих потенциально патогенных микроорганизмов и грибов вследствие конкуренции за необходимые питательные вещества или выработки таких соединений, как колицины или кислоты. Например, патогенная флора влагалища угнетается молочной кислотой, которая вырабатывается одним из видов бактерий-комменсалов. Повреждение последних с помощью антибиотиков повышает риск инфицирования паразитическими грибами и бактериями.
К гуморальным иммунным компонентам относятся самые разнообразные иммунологически активные молекулы, от простых до весьма сложных, которые продуцируются иммунокомпетентными и другими клетками и участвуют в защите организма от чужеродного или своего дефектного. Среди них, прежде всего, следует выделить вещества белковой природы - иммуноглобулины, цитокины, систему компонентов комплемента, белки острой фазы, интерферон и другие. К иммунным компонентам относятся ингибиторы ферментов, подавляющие ферментативную активность бактерий, ингибиторы вирусов, многочисленные низкомолекулярные вещества, являющиеся медиаторами иммунных реакций (гистамин, серотонин, простагландины и другие). Огромное значение для эффективной защиты организма имеют насыщенность тканей кислородом, рН среды, наличие Са2+ и Mg2+ и других ионов, микроэлементы, витамины и др.
