Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по химии ч 2.doc
Скачиваний:
4
Добавлен:
23.11.2019
Размер:
890.37 Кб
Скачать

2.4. Химические свойства кислот

1. Рассмотрим характерные свойства кислот, не являющихся окислите­лями.

1.1. Реакции обмена

а) Взаимодействие с основаниями (как с растворимыми, так и с нерастворимыми) — реакция нейтрализации:

NaOH + HCl = NaCl + H2O

Cu(OH) + H2SO4 = CuSOраствор + 2 H2O.

б) Взаимодействие с солями

BaCl2 + H2SO4 = BaSO4  + 2HCl Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O.

При составлении уравнений реакций обмена необходимо учитывать условия протекания этих реакций до конца:

а) образование хотя бы одного нерастворимого соединения

б) выделение газа

в) образование слабого электролита ( например, воды)

1.2. Реакции с основными и амфотерными оксидами:

а) FeO + H2SO4 = FeSO4 + H2O б) ZnO + 2 HNO3 = Zn(NO3)2 + H2O.

1.3. Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют водород из кислот, не являющихся сильными окисли­телями (HCl, H2SO4 (разб.)):

Zn + H2SO4 (разб.) = ZnSO4 + H2 Mg + 2 HCl = MgCl2 + H2.

Если в результате реакции образуется нерастворимая соль или оксид, то металл пассивируется и его растворение не происходит:

Pb + H2SO4(PbSO4 — нерастворим в воде) Al + HNO3 (конц.)(поверхность металла покрывается оксидной пленкой).

1.4. Термически неустойчивые кислоты, например, угольная, сернистая, разлагаются при комнатной температуре или при легком нагре­вании:

H2CO3 = CO2 + H2O H2SO3 SO2 + H2O  SiO x H2O SiO2 + x H2O .

1.5. Реакции с изменением степени окисления кислотообразующего элемента.

4 + MnO2 = MnCl2 + + 2 H2O

+ H2O2 = + H2O

2 + Cu = CuSO4 + + 2 H2O 2 H2S + H2SO3 = 3 S  + 3 H2O.

По этому принципу кислоты можно разделить на кислоты-восстанови­тели и кислоты-окислители.

2. Свойства кислот-окислителей.

2.1. Реакции обмена. Кислоты-окислители реагируют с оксидами, гидроксидами и солями, в состав которых входят катионы металлов не проявляющих переменные степени окисления также как и кислоты, не являющиеся окислителями (см. 1.1 и 1.2 в п. 2.4).

2.2. Реакции с гидроксидами, оксидами и солями.

а) Если металл, образующий основание, может находиться в нескольких степенях окисления, а кислота проявляет окислительные свойства, то эти реакции могут протекать с изменением степеней окисления элементов, например:

Fe(OH)2 + 4 HNO3 (конц.) = Fe(NO3)3 + NO2 + 3 H2O.

б) Аналогично ведут себя в реакциях с кислотами-окислителями и оксиды металлов, проявляющих переменные степени окисления:

2 FeO + 4 H2SO4 (конц.) = Fe2(SO4)3 + SO2 + 4 H2O.

в) При реакциях кислот-окислителей с солями, содержащими анион, проявляющий восстановительные свойства, происходит его окисление:

3 Na2S + 8 HNO3 (разб.) = 6 NaNO3 + 3 S  + 2 NO  + 4 H2O 8 NaI + 5 H2SO4 (конц.) = 4 I2+ H2S + 4 Na2SO4 + 4 H2O.

2.3. Взаимодействие с металлами.

Азотная и концентрированная серная кислоты являются сильными окислителями и могут взаимодействовать с металлами, стоящими в ряду напряжений как до, так и после водорода, но водород в этом случае не вы­деляется, а образуются продукты восстановления азота и серы, причем, состав продуктов зависит от активности металла, концентрации кислоты и температуры:

Cu + 4 HNO3 (конц.) = Cu(NO3)2 + 2 NO2 + 2 H2O 3 Cu + 8 HNO3 (разб.) = 3 Сu(NO3)2 + 2 NO  + 4 H2O 5 Co + 12 HNO3 (оч.разб.) = 5 Co(NO3)2 + N2 + 6 H2O 4 Zn + 10 HNO3 (оч.разб.) = 4 Zn(NO3)2 + NH4NO3 + 3 H2O.

С разбавленной серной кислотой медь не взаимодействует, но реагирует с концентрированной серной кислотой, однако водород при этом не выде­ляется:

Cu + 2 H2SO4 (конц.) = CuSO4 + SO2 +2 H2O.

Некоторые металлы, стоящие в ряду напряжений до водорода, напри­мер, Fe, Al, Cr, эти кислоты пассивируют за счет образования на поверхно­сти металла оксидной пленки нерастворимой в концентрированных кисло­тах при обычных условиях и поэтому указанные металлы не взаимодейст­вуют с концентрированными серной и азотной кислотами.

2.4. Реакции с неметаллами. Концентрированные азотная и серная кислоты взаимодействуют с неметаллами: серой, фосфором, углеродом:

S + 2 HNO3 (конц.) H2SO4 + 2 NO  S + 2 H2SO4 (конц.) 3 SO2 + 2 H2O 3 P + 5 HNO3 (конц.) + 2 H2O 3 H3PO4 + 5 NO  C + 2 H2SO4 (конц.) CO2 + 2 SO2 + 2 H2O.

2.5. Кислоты, образованные переходными металлами в высших степе­нях окисления, например, хромовая [H2CrO4], марганцовая [HMnO4], явля­ются сильными окислителями.

2 H2CrO4 + 3 SO2 = Cr2(SO4)3 + 2 H2O.

Кислоты, в которых кислотообразующий элемент находится в промежу­точной степени окисления могут проявлять как окислительные, так восста­новительные свойства.

H2SO3 + 2 H2S = 3 S  + 3 H2O (H2SO3 — окислитель) H2SO3 + NO2 = H2SO4 + NO (H2SO3 — восстановитель).