Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Радіоактивність.doc
Скачиваний:
15
Добавлен:
23.11.2019
Размер:
57.34 Кб
Скачать

Гамма-розпад (ізомерний перехід)

Майже всі ядра мають, крім основного квантового стану, дискретний набір збуджених станів з більшою енергією (винятком є ​​ядра 1 H, 2 H, 3 H і 3 He). Збуджені стани можуть заселятися при ядерних реакціях або радіоактивному розпаді інших ядер. Більшість порушених станів мають дуже малі часи життя (менше наносекунди). Однак існують і досить довгоживучі стану (чиї часи життя вимірюються мікросекунд, цілодобово або роками), які називаються ізомерних, хоча межа між ними і короткоживучими станами вельми умовна. Ізомерні стану ядер, як правило, розпадаються в основний стан (іноді через кілька проміжних станів). При цьому випромінюються один або кілька гамма-квантів; збудження ядра може зніматися також за допомогою вильоту конверсійних електронів з атомної оболонки. Ізомерні стани можуть розпадатися також і за допомогою звичайних бета-і альфа-розпадів.

Йонізуючі випромінювання

Всі види радіоактивних випромінювань, що супроводжують радіоактивність, називають йонізуючими випромінюваннями. Йонізуючі випромінювання — процес збудження та йонізації атомів речовини при проходженні крізь них гамма-квантів та частинок, що утворилися внаслідок α- та β-розпаду. При проходженні, наприклад, гамма-квантів крізь речовину, кванти перетворюються на пару електрон-позитрон за умови, що енергія гамма-кванту перевищує енергію цих двох частинок (>1 МеВ). α-частинки швидко втрачають всю енергію, оскільки збуджують всі атоми, що трапляються на їх шляху (1-10 см на повітрі, 0,01-0,2 мм у рідинах). β-частинки менш ефективно взаємодіють з речовинами (2-3 м на повітрі, 1-10 мм у рідинах). γ-кванти мають найбільшу проникну здатність. Нейтрони, що не мають електричного заряду, безпосередньо не йонізують атоми. Проте в результаті взаємодії нейтронів з ядрами виникають швидкі заряджені частинки та гамма-кванти, що є йонізуючими частинками. При тривалому перебуванню людини в зоні радіоактивного випромінювання відбувається йонізація та збудження її клітин. У результаті клітини вступають у нові хімічні реакції та утворюють нові хімічні речовини, що порушують нормальне функціонування організму. Мірою дії йонізуючих випромінювань є поглинута доза випромінювання (Грей), що дорівнює відношенню переданої йонізуючими випромінюваннями енергії до маси речовини (D=E/m). Потужність дози випромінювання вимірюється відношення поглинутої дози випромінювання до часу (Pв=D/t). Радіоактивне випромінювання використовують при рентгенологічному обстеженні.

Біологічна дія

Радіоактивне опромінення призводить до значного пошкодження живої тканини. Йонізація хімічних речовин в біологічній тканині створює можливість хімічних реакцій, які невластиві для біологічних процесів, й до утворення шкідливих речовин. Пошкодження радіацією ДНК викликає мутації.

Розрізняють пряму дію радіації (наприклад, розрив молекули ДНК в результаті проходження елементарної частинки) та непряму, коли, наприклад, йонізується вода, що входить до складу клітин (відбувається радіоліз). Ці первинні фізнко-хімічні процеси діють паралельно й призводять до складних взаємопов'язаних змін, що порушують функціонування систем організму. У разі дії обох видів радіації головними об'єктами опромінення є великі білкові молекули.

Під час проходження елементарної частинки крізь живу клітину руйнуються елементарної частинки крізь живу клітину руйнуються хімічні зв'язки молекул (пряма дія). З утворених вільних радикалів виникають нові хімічні сполуки і непряма дія). Непряма дія йонізуючого випромінювання набагато більша, тому що утворені вільні радикали надзвичайно «агресивні», а під час проходження елементарних частинок крізь клітину утворюється цілий трек з таких радикалів.

Дуже небезпечний радіоліз води, під час якого утворюється супероксидний оксиген О2, який завдає значних пошкоджень оточуючим органічним молекулам. Пошкоджуються також окремі ділянки ДНК внаслідок дезамінування основ амінокислот чи розривів карбонових зв'язків. Це призводить до генетичних та соматичних ефектів. Якщо радіація діє на білки, спостерігається їх часткова денатурація, вони втрачають свої функції. Таким чином, навіть дуже незначна кількість енергії, що потрапила в організм, призводить до значних змін у ньому. Це явище дістало назву радіобіологічного парадоксу — невідповідності між експозиційною дозою та ефектом її дії.

Найвищою радіочутливістю характеризуються клітини, що мають велику швидкість поділу. До них належать клітини кісткового мозку, лімфоїдної тканини, статеві, епітелій шлунково-кишкового тракту. Найменш уразливі нервові волокна, кістки, хрящі. Неоднакова чутливість до радіації організмів різного віку. Чим молодший організм — тим він чутливіший.

Сила впливу радіонуклідів, які потрапляють усередину тіла, визначається їх фізико-хімічними властивостями, способами й часом проникнення, швидкістю виведення. При цьому має значення розмір частинок, що містять радіонукліди. Наприклад, більші частинки затримуються у верхніх дихальних шляхах і можуть швидко видалитися. Також можуть бути швидко видалені, не потрапивши у кров, частинки, які надійшли з їжею. Ступінь видалення радіонуклідів з організму залежить від загальної швидкості метаболічних процесів (у молодшого організму вони швидші).