Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
RADIOACTIVITY.doc
Скачиваний:
1
Добавлен:
22.11.2019
Размер:
84.48 Кб
Скачать

Radioactivity, nuclear fuel cycle, radioactive wastes management

From history

1895: H. Becquerel - discovery of radiation

1896: W.C. Roentgen – X rays

1898: M. Curie-Sklodowska - discovery of radium (natural radioactivity)

1934: J. Curie – preparation of first artificial radioactive element

1942: E. Fermi – 1. controlled fission reaction

1954: Obninsk – 1. nuclear power plant

Radioactivity

  • Feature of atoms (of given elements) to decay to other elements

Activity

  • Amount of radioactive changes per time unit: 1 Becquerel (Bq)= 1 decay per second

Ionizing radiation

  • Released by radioactive elements

  • X rays

  • Cosmic rays

Half time:

  • Time period, one half of nuclei decay (from fraction of second up to bil. of years)

Izotope:

  • Element is defined by number of protons, might differ by number of neutrons

How to detect and measure radioactivity (ionising radiation)

  • We cannot use chemical procedures, but physical effects

    • Vaporous chamber

    • Geiger-muller

    • Photographs

    • Optical features of some matter

    • Changes in features of semiconductors

    • Thermoluminescence

Utilization of radioactive elements in practice

  • Neutron activation analysis (detection of unknown elements with very low concentration – 10-12 g/g

  • Marked compounds – monitoring of chemical reactions, technological processes (e.g. blending), observation of metabolism

  • radiopharmaceuticals – direct irradiation of cancer tumours

  • spas

  • sterilization and disinfection (e.g. old wooden objects)

  • leak tests

  • test of material quality

  • material modification – e.g. colour of glass, polymers production

  • fire alarms, and many other

Radioactivity and ionising radiation – health and other effects

Absorbed dose

  • absorbed energy per unit weight in J/kg (1 Gray = 1J/kg), DT,R

  • effect differ with intensity and type of radiation

Equivalent dose

  • respects “quality” of radiation – radiation weighting factor wR

    • photons, all energies incl. gamma and X rays: 1

    • electrons, all energies: 1

    • neutrons: <10 keV 5

<100 keV 10

<2 MeV 20

<20 MeV 5

    • protons: 5

    • alpha particles, fission fragments, heavy nuclei 20

Effective dose

  • respects type of organ affected, wT

    • gonads 0.2

    • bone marrow 0.12

    • lung 0.12

    • skin 0.01

    • bone surface 0.01

Collective dose

  • exposure of group of people or population (average dose times number of individuals affected)

Sources of radiation

  • cosmic rays (magnetic field of Earth, absorption in atmosphere),

  • radioactive background of Earth, differs according to location, typically 1-5 mSv

  • nuclear test

  • artificial sources (e.g. X ray apparatus, irradiation during cancer therapy, etc.)

Nuclear fuel cycle

  1. Uranium mining

    • Classical way

    • Chemical way with use of sulphur acid – possible long term impact on underground water – Czech case

  2. Chemical processing – “yellow cake” preparation (concentration)

  3. Uranium enrichment (natural uranium consist of only 0.3% of U235 izotope)

  • Conversion into gas UF6, physical methods (slight differences in specific weight, or speed of diffusion)

  • Conversion into U3O8

  1. Fabrication of fuel cells

  2. Nuclear power plant – e.g. 2x1000 MW, 30 years, 1826 tonnes of spent fuel

  3. Temporary storage (app. 40-50 years)

  4. Final disposal

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]