Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
metodichka_po_labam.doc
Скачиваний:
12
Добавлен:
14.11.2019
Размер:
6.2 Mб
Скачать

Контрольные вопросы

1. Как связаны между собой напряженность и индукция магнитного поля? Что они характеризуют?

2. Сформулируйте закон Био-Савара-Лапласа.

3. Сформулируйте принцип суперпозиции.

4. Пользуясь законом Био-Савара-Лапласа, дайте вывод формулы для индукции магнитного поля на оси кругового витка с током.

5. Пользуясь законом Био-Савара-Лапласа, получите формулу для индукции магнитного поля на оси соленоида конечной длины. Выведите из нее формулу для магнитного поля бесконечного соленоида.

6. Сформулируйте теорему о циркуляции вектора магнитной индукции.

7. Пользуясь теоремой о циркуляции, дайте вывод формулы для индукции магнитного поля бесконечного соленоида.

8. В чем заключается эффект Холла? Чем он объясняется?

9. Дайте вывод формулы для ЭДС Холла.

Используемая литература

[1] §§ 22.1, 22.2, 23.2;

[2] §§ 14.5, 15.2, 15.4, 15.5;

[3] §§ 2.37, 2.38;

[4] т.2, §§ 42, 43, 47, 50, 79;

[5] §§ 114, 117, 119.

Лабораторная работа 2-15 Изучение эффекта Холла в полупроводнике

Цель работы: определение постоянной Холла (R), концентрации (n), знака носителей заряда в полупроводнике и их подвижности (u).

Теоретическое введение

Эффект Холла (1879 г.) – это возникновение в полупроводнике (или металле) с током плотностью , помещенном в перпендикулярное току магнитное поле , электрического поля в направлении, перпендикулярном и . То есть, если металлическую или полупроводниковую пластинку, по которой течет ток I, поместить в перпендикулярное току магнитное поле , то между гранями пластинки, параллельными и полю , и току I, возникает Холловская разность потенциалов Uх.

Поместим полупроводниковую пластинку с током плотностью в магнитное поле , перпендикулярное (рис.15.1). Скорость носителей тока (электронов) направлена противоположно плотности тока . Электроны испытывают действие силы Лоренца

, (15.1)

величина которой равна:

, (15.1а)

так как угол α между скоростью и магнитной индукцией равен 900.

Распределение зарядов в пластинке определяется по правилу левой руки. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по направлению вектора плотности тока, а вектор входил в ладонь, то отогнутый большой палец укажет направление силы Лоренца. В данном случае сила Лоренца направлена вверх (рис.15.1).

А

d

UХ

C

Рис. 15.1. Возникновение поперечной (холловской) разности потенциалов (на нижней грани – «+», на верхней – «–» ).

Таким образом, на верхней грани пластинки возникнет повышенная концентрация электронов (она зарядится отрицательно), а на нижней грани – их недостаток (зарядится положительно). В результате этого между горизонтальными гранями пластинки (верхней и нижней) возникнет дополнительное поперечное электрическое поле, направленное снизу вверх. Когда напряженность EB этого поперечного поля достигнет такой величины, что его действие на заряды будет уравновешивать силу Лоренца, то установится стационарное распределение зарядов в поперечном направлении. Тогда Fл=Fэл, или . За счет возникшего поперечного электрического поля между верхней и нижней гранями возникает Холловская разность потенциалов. Так как разность потенциалов и напряжённость электрического поля связаны соотношением , то

Uх=hEB=hvB, (15.2)

где h – высота пластинки.

Учитывая, что плотность тока

j=qnv, (15.3)

где n – концентрация зарядов, а сила тока через образец I=jS, где S=hd – площадь сечения пластинки, получим для скорости: v=j/(qn)=I/(hdqn). С учетом (15.2) Холловская разность потенциалов:

, (15.4)

где

(15.5)

носит название постоянной Холла. Поэтому

, (15.6)

где I - ток через образец, d=3.10-4м – толщина пластинки.

По закону Ома в дифференциальной форме плотность тока j прямо пропорциональна напряженности электрического поля E:

j=E,

где - удельная электропроводимость. С учетом (15.3):

=qnu, (15.7)

где u=v/Eподвижность зарядов, численно равная средней скорости направленного движения зарядов в электрическом поле с напряженностью, равной 1 В/м. Зная удельную электропроводимость образца (=0.13(Ом.м)-1), полагая q (заряд электрона), вычислим из экспериментальных данных постоянную Холла по формуле (15.6) и рассчитаем величину подвижности:

u=/(en)=RХ. (15.8)

Итак, по измеренному экспериментально значению постоянной Холла можно:

1) определить концентрацию носителей тока в проводнике (при известных характере проводимости и заряде носителей);

2) судить о природе проводимости полупроводников, так как знак постоянной Холла совпадает со знаком заряда носителей тока.