Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рек для НПП ПБ, ТЫЛ, ЭКОНОМ заочка 2012.doc
Скачиваний:
243
Добавлен:
27.09.2019
Размер:
14.67 Mб
Скачать

1) Временное ослепление, которое длится несколько минут;

2) Ожоги глазного дна, возникающие на больших расстояниях при прямом взгляде на взрыв;

3) Ожоги роговицы и век, возникающие на тех же расстояниях, что и ожоги кожи.

При закрытых глазах временное ослепление и ожоги глазного дна исключаются.

Слайд 20

Воздействие светового излучения на здания и сооружения. Световое излучение в зависимости от свойств материалов вызы­вает их оплавление, обугливание и воспламенение, что ведет к загоранию различных предметов и пожарам в населенных пунктах и лесах.

Световые лучи на близких расстояниях от центра взрыва падают вертикально или под углами, близкими к 90°, а на больших расстояниях под небольшими углами, практически параллельно поверхности земли. В этом случае световое излучение проникает через окна в комнаты и может воспламенить домашние предметы: ковры, занавески, обивку мебели, книги и др. Под действием светового излучения и ударной волны в городе могут возникать отдельные, массовые, сплошные пожары или огневые штормы, являющиеся разновидностью сплошных пожаров.

Слайд 21

Защитой от светового излучения могут служить различные предметы, создающие тень, но лучшие результаты достигаются при использовании убежищ, укрытий, защищающих одновре­менно и от других поражающих факторов.

Для защиты от светового излучения применяют свето и теплозащитные покрытия, используют естественные непрозрачные преграды (лес, здания и др.), дымовые завесы, дождь, снегопад.

Слайд 22

Проникающая радиация

Проникающая радиация ядерного взрыва представляет собой поток гамма (γ) - излучения и нейтронов °).

γ -излучение и нейтронное излучение различны по своим физическим свойствам, а общим для них является то, что они могут распространяться в воздухе во все стороны на расстояния до 2,5—3 км. Проходя через биологическую ткань, γ -кванты и нейтроны ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению специфического заболевания—лучевой болезни.

Слайд 23

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

γ -кванты могут быть мгновенными, испускаемыми в ходе протекания ядерных реакций взрыва, при взаимодействии нейтронов с конструкционными материалами боеприпаса и с ближайшими к нему слоями воздуха, осколочными, образуемыми при радиоактивном распаде осколков деления, или захватными, возникающими при ядерных реакциях захвата нейтронов атомами воздуха и грунта на значительных расстояниях от центра взрыва боеприпаса.

Нейтроны °). проникающей радиации могут быть мгновенными, испускаемыми в ходе протекания ядерных реакций взрыва, и запаздывающими, образующимися в процессе распада осколков деления в течение первых 2—3 с после взрыва.

Время действия проникающей радиации при взрыве зарядов деления и комбинированных зарядов не превышает нескольких секунд (10-15 секунд) и определяется временем подъема облака взрыва на такую высоту, при которой γ -излучение поглощается толщей воздуха и практически не достигает поверхности земли.

Характеристика поражающего действия проникающей радиации

При воздействии на организм, ионизируя атомы и молекулы живых клеток, проникающая радиация приводит к двум видам поражающих эффектов:

- детерминированные пороговые эффекты, которые зависят от дозы излучения (лучевая болезнь, лучевая катаракта и лучевое бесплодие);

- стохастические безпороговые эффекты, вероятность возникновения которых зависят от дозы излучения (злокачественные опухли, лейко­зы, наследственные болезни).

Убежища и противорадиационные укрытия практически полностью защищают от поражающего действия проникающей радиации.

Характеристика радиоактивного заражения (загрязнение) ядерным взрывом

Слайд 24

Радиоактивное заражение местности, приземного слоя атмосферы, воздушного пространства, воды и других объектов возникает в результате выпадения радиоактивных веществ из облака ядерного взрыва.

Оно приводит к радиоактивному загрязнению окружающей среды, местности, предметов и объектов на ней, а также воды, продуктов питания, пищи, животных и человека.

Слайд 25

Радиоактивное загрязнение - это наличие радиоактивных веществ на поверхности предметов, в почве, в воздухе, в теле человека или в другом месте, в количестве превышающем уровни, установление нормами радиационной безопасности.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва, но и на расстоянии десятков и даже со­тен километров от него. В отличие от других поражающих факторов, действие которых проявляется в течение относительно короткого времени после ядерного взрыва, радиоактивное заражение местности может быть опасным на протяжении нескольких суток и недель после взрыва.

Наиболее сильное заражение местности происходит при наземных ядерных взрывах, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией.

Сами радиоактивные вещества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть изменена какими-либо физическими или химическими методами!

Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30 — 50 мкм, принято называть ближним следом заражения. На больших расстояниях — дальний след — небольшое заражение местности не влияет на работоспособность персонала объекта.

Источниками радиоактивного заражения при ядерном взрыве являются: продукты деления (осколки деления) ядерных взрывчатых веществ (Рu-239, U-235, U-238); радиоактивные изотопы (радионуклиды), образующиеся в грунте и других материалах под воздействием нейтронов,— наведенная активность; не разделившаяся часть ядерного заряда.

Продукты деления, выпадающие из облака взрыва, представляют собой первоначально смесь около 80 изотопов 35 химических элементов средней части Периодической системы элементов Д. И. Менделеева: от цинка (№ 30) до гадолиния (№ 64). Почти все образующиеся ядра изотопов перегружены нейтронами, являются нестабильными и претерпевают β-распад с испусканием γ -квантов.

Первичные ядра осколков деления в последующем испытывают в среднем три-четыре распада и в итоге превращаются в стабильные изотопы. Таким образом, каждому первоначально образовавшемуся ядру (осколку) соответствует своя цепочка радиоактивных превращений.

Радиоактивное загрязнение местности обуславливается образованием радиоактивного облака при наземном ядерном взрыве. Радионуклиды в облаке ядерного взрыва представляют собой 200 радиоизотопов 34-х элементов средней части таблицы Д. И. Менделеева.

Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного загрязнения, след которой может достигать нескольких сот километров.

По степени опасности зараженную местность по следу облака взрыва принято делить на следующие четыре зоны:

Зона А умеренного заражения. Дозы излучения до полного распада РВ на внешней границе зоны Д~ =40 рад, на внутренней границе Д~ =400 рад. Ее площадь составляет 70—80% площади всего следа.

Зона Б сильного заражения. Дозы излучения на границах Д~ =400 рад и Д~ ==1200 рад. На долю этой зоны приходится примерно 10% площади радиоактивного следа.

Зона В опасного заражения. Дозы излучения на ее внешней границе за период полного распада РВ Д~ =1200 рад, а на внутренней границе Д~ =4000 рад. Эта-зона занимает примерно 8—10% площади следа облака взрыва.

Зона Г чрезвычайно опасного заражения. Дозы излучения на ее внешней границе за период полного распада РВ Д~ =4000 рад, а в середине зоны Д~=7000 рад.

Уровни радиации на внешних границах этих зон через 1 ч после взрыва составляют соответственно 8, 80, 240 и 800 рад/ч, а через 10 ч—0,5; 5; 15 и 50 рад/ч. Со време­нем уровни радиации на местности снижаются ориентировочно в 10 раз через отрезки времени, кратные 7. Например, через 7 ч после взрыва мощность дозы уменьшается в 10 раз, а через 49 ч—в 100 раз.

Объем воздушного пространства, в котором происходит осаждение радиоактивных частиц из облака взрыва и верхней части пылевого столба, принято называть шлейфом облака. По мере приближения шлейфа облака к объекту уровни радиации возрастают вследствие γ - излучения радиоактивных веществ, содержащихся в шлейфе. После подхода края шлейфа наблюдается выпадение радиоактивных частиц.

Вначале из облака выпадают наиболее крупные частицы с высокой степенью их активности, по мере удаления от места взрыва — более мелкие, а уровень радиации при этом постепенно снижается.

Ориентировочное снижение уровня радиации при ядерном взрыве: если через 1 час после взрыва уровень радиации примем за 100%, то примерно через 2 суток от составит 1%, а через 2 недели 0,1%. Таким образом, при ядерном взрыве через 2 недели после взрыва уровень радиации приблизится к нулю.

Слайд 26

В чем заключается поражающее действие радиоактивного заражения (загрязнения)?

На загрязненной территории поражающим действием обладает гамма (γ) — излучения, вызывающее общее внешнее облучение, бета (β) - лучи (поток электронов), вызывающие при внешнем воздействии радиационное поражение кожи, при попадании внутрь организма - поражение внутренних органов, альфа (α)- частицы (поток ядер гелия) представляющие опасность только при попадании на кожу, внутрь организма.

При попадании внутрь организма всасывающиеся радиоактивные про­дукты распространяются неравномерно. Особенно много их концентрируется в щитовидной железе (примерно в 1000 - 10000 раз больше, чем в других тканях) и в печени (в 10 - 100 раз больше, чем в других органах). Поэтому указанные органы подвергаются облучению в больших дозах, что приводит к разрушению тканей, серьезному нарушению их функций.

Слайд 27

Для защиты от поражающего действия радиоактивного загрязнения необходимо применять индивидуальные и коллективные средства защиты, проводить заблаговременную химическую защиту путем применения медицинских средств, а также устанавливать режимы радиационной защиты.

Электромагнитный импульс ядерного взрыва

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 1000 м. и более. Спектр частот электромагнитного импульса соответствует диапазону радиоволн. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ). Длится электромагнитный импульс до 15 секунд.

Слайд 28

Электромагнитный импульс ядерного взрыва - это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма - излучения и нейтронов с атомами окружающей среды.

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на вооружении и военной технике и других объектах.

Основной причиной генерации ЭМИ длительностью менее 1 с считают взаимодействие γ-квантов и нейтронов с газом во фронте ударной волны и вокруг него. Важное значение имеет также возникновение асимметрии в распределении пространственных электрических зарядов, связанных с особенностями распространения γ - излучения и образования электронов.

При наземном или низком воздушном взрыве γ -кванты, испускаемые из зоны протекания ядерных реакций, выбивают из атомов воздуха быстрые электроны, которые летят в направлении движения γ -квантов со скоростью, близкой к скорости света, а положительные ионы (остатки атомов) остаются на месте. В результате такого разделения электрических зарядов в пространстве образуются элементарные и результирующие электрические и магнитные поля ЭМИ.

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии порядка нескольких километров от центра взрыва.

При высотном ядерном взрыве (Н>10 км) могут возникать поля ЭМИ в зоне взрыва и на высотах 20—40 км от поверхности земли. ЭМИ в зоне взрыва возникает за счет быстрых электронов, которые образуются в результате взаимодействия γ -квантов ядерного взрыва с материалом оболочки боеприпаса и рентгеновского излучения с атомами окружающего разреженного воздушного пространства.

Испускаемое из зоны взрыва γ -излучение в направлении поверхности земли начинает поглощаться в более плотных слоях атмосферы на высотах 20—40 км, выбивая из атомов воздуха быстрые электроны. В результате разделения и перемещения положительных и отрицательных зарядов в этой области и в зоне взрыва, а также при взаимодействии зарядов с геомагнитным полем Земли возникает электромагнитное излучение, которое достигает поверхности земли в зоне радиусом до нескольких сот километров.

Электрические и магнитные поля ЭМИ в роли поражающего фактора характеризуются напряженностью поля. В динамике импульс ЭМИ представляет собой быстро-затухающий колебательный процесс с несколькими квазиполупериодами. Напряженность электрического и магнитного полей зависит от мощности, высоты взрыва, расстояния от центра взрыва и свойств окружающей среды.

Слайд 29

Характеристика поражающего действия электромагнитного импульса

Поражающее действие ЭМИ проявляется прежде всего по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на оснащении объектов.

Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств. Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Когда ЭМИ недостаточен для повреждения приборов или отдельных деталей, то возможно срабатывание средств защиты (плавких вставок, грозоразрядников) и нарушение работоспособности линий.

Если ядерные взрывы произойдут вблизи линий энергоснабжения, связи, имеющих большую протяженность, то наведенные в них напряжения могут распространяться по проводам на многие километры и вызывать повреждение аппаратуры и поражение личного состава, находящегося на безопасном удалении по отношению к другим поражающим факторам ядерного взрыва.

Электромагнитный импульс представляет опасность и при наличии прочных сооружений (укрытых пунктов управления), которые рассчитаны на устойчивость к воздействию ударных волн наземного ядерного взрыва, произведенного на расстоянии нескольких сот метров. Сильные электромагнитные поля могут повредить электрические цепи и нарушить работу неэкранированного электронного и электротехнического оборудования, так что потребуется время для его восстановления.

Высотный взрыв способен создавать помехи в работе средств связи на очень больших площадях.

Электромагнитный импульс может свидетельствовать о таких параметрах ядерного взрыва, как мощность, вид взрыва и координаты.

Электромагнитный импульс вызывает поражения живых организмов, выводит из строя или ухудшает работу электронных средств, средств проводной связи и систем электроснабжения; может вызвать возгорание, обугливание, оправление или испарение металлов и других материалов.

Кроме того, наводимые токи в металлических элементах под воздействием электромагнитного импульса, могут быть смертельно опасными для человека.

Идеальной защитой от электромагнитного импульса является металлический замкнутый контур («камера Фарадея»). Однако обеспечить такой защитой в ряде случаев невозможно. В этом случае используются:

- токопроводящие сетки для окон и вентиляционных отверстий;

- экран для аппаратуры.

Кроме того, для защиты от ЭМИ разрабатываются различные устройства, срабатывающие при увеличении тока и отключающие аппаратуру. Наиболее перспективный подход - создание волоконно - оптической связи.

Второй учебный вопрос: «Поражающие факторы ОМП, воздействие их на личный состав и технику ППС».

Химическое оружие

Слайд 30

Химическое оружие — это оружие, основанное на использование токсических свойств отравляющих веществ (0В), токсинов и фитотоксинов.

Слайд 31

Отравляющие вещества (0В) - химические соединения, обладающие определенными токсическими и физико-химическими свойствами, обеспечивающими при их боевом применении поражение живой силы, а также заражение воздуха, обмундирования, вооружения, техники и местности

Слайд 32

Токсины - вещество белковой природы бактериального, животного или растительного происхождения, обладающие подобно 0В поражающим действием на организм человека и животных.

Фитотоксины - химические и природные вещества в рецептурной форме предназначенные для уничтожения сельскохозяйственных культур в целях лишения продовольственной базы и подрыва военно-технического потенциала.

Подразделяются на:

  • альгициды (поражают водную растительность);

  • арборициды (поражают деревья и кустарники);

  • гербициды (поражают травяную растительность, злаковые и овощные культуры)

  • десиканты (поражают растительность путем ее высушивания);

  • дефолианты (приводят к опаданию листьев растительности)

Слайд 33

Химическое оружие включает в себя химические боеприпасы и средства доставки их к цели.

Химические боеприпасы

Химические боеприпасы - боеприпасы, снаряженные боевыми 0В, токсинами и фототоксинами.

По способу перевода в боевое состояние они могут быть следующего действия:

- взрывного (артиллерийские снаряды, мины, авиационные бомбы, боевые части ракет);

- выливного (выливные авиационные приборы);

- распыливающего (распыливающие авиационные приборы);

- термического (шашки);

- механические (генераторы аэрозолей).

Особую разновидность составляют бинарные химические боеприпасы, которые снаряжаются раздельно двумя обычно нетоксичными или малотоксичными компонентами, образующими 0В при их смешивании.

Классификация 0В