Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_na_fiziku.docx
Скачиваний:
9
Добавлен:
26.09.2019
Размер:
914.23 Кб
Скачать

Перечислим свойства зарядов

1. Существуют заряды двух видов; отрицательные и положительные. Разноименные заряды притягиваются, одноименные отталкиваются. Носителем элементарного, т.е. наименьшего, отрицательного заряда является электрон, заряд которого qe= -1,6*10-19Кл, а масса mе=9,1*10-31кг. Носителем элементарного положительного заряда является протон qр=+1,6*10-19Кл, масса mр=1,67*10-27кг.

2. Электрический заряд имеет дискретную природу. Это означает, что заряд любого тела кратен заряду электрона q=Nqe, где N – целое число. Однако мы, как правило, не замечаем дискретности заряда, так как элементарный заряд очень мал.

3. В изолированной системе, т.е. в системе, тела которой не обмениваются зарядами с внешними по отношению к ней телами, алгебраическая сумма зарядов сохраняется (закон сохранения заряда).

4. Эл. заряд всегда можно передать от одного тела к другому.

5. Единица заряда в СИ – кулон (Кл). По определению, 1 кулон равен заряду, протекающему через поперечное сечение проводника за 1 с при силе тока 1 А.

6. Закон сохранения зарядов – в замкнутой системе алгебраическая сумма зарядов не изменяется. Этот экспериментально установленный факт называется законом сохранения электрического заряда. Нигде и никогда в природе не возникает и не исчезает заряд одного знака. Появление каждого положительного заряда всегда сопровождается появлением равного по абсолютному значению отрицательного заряда. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности один от другого, они могут лишь взаимно нейтрализовать друг друга, если равны по абсолютному значению.

Закон Кулона

Заряды, распределенные на телах, размеры которых значительно меньше расстояний между ними, можно называть точечными, т. к. в этом случае ни форма, ни размеры тел существенно не влияют на взаимодействия между ними.

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Силы электростатического взаимодействия зависят от формы и размеров взаимодействующих тел и характера распределения зарядов на них.

Силы взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению абсолютных значений зарядов и обратно пропорциональна квадрату расстояния между ними:

 

Если тела находятся в среде с диэлектрической проницаемостью  , тогда сила взаимодействия будет ослабляться в   раз

Силы взаимодействия двух точечных неподвижных тел направлены вдоль прямой, соединяющей эти тела.

Единицей электрического заряда в международной системе принят кулон. 1 Кл – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А.

Коэффициент пропорциональности в выражении закона кулона в системе СИ равен

Вместо него часто используется коэффициент, называемый электрической постоянной

С использованием электрической постоянной закон кулона имеет вид 

Если имеется система точечных зарядов, то сила, действующая на каждый из них, определяется как векторная сумма сил, действующих на данный заряд со стороны всех других зарядов системы. При этом сила взаимодействия данного заряда с каким-то конкретным зарядом рассчитывается так, как будто других зарядов нет (принцип суперпрозиции).

Дискретность электрического заряда. Чрезвычайно точные измерения показали, что заряд протона по модулю в точности равен заряду электрона. Более того, другие заряженные элементарные частицы также имеют электрические заряд в точности равный заряду электрона. Таким образом, заряд электрона является минимально возможным электрическим зарядом, минимальной «порцией» электрического заряда, поэтому его называют  элементарным зарядом. Многочисленные попытки, продолжающиеся и в настоящее время, обнаружить частицы, имеющие заряд, меньший элементарного, закончились неудачей1. Так как заряды тел обусловлены избытком или недостатком электронов, то их заряд оказывается кратным элементарному заряду. Первые измерения величины заряда электрона провел в  1909 − 1913 году американский физик Р. Милликен. Идея его экспериментов очень проста − он наблюдал движение микроскопических капелек масла в электрическом поле. Ему удалось показать, что заряды капелек кратны элементарному заряду, и измерить величину этого заряда. В настоящее время заряд электрона измерен с очень высокой точностью, относительная погрешность измерений меньше чем 10−8. По современным данным величина этого заряда равна e ≈ 1,6 × 10−19 Кл. Малость этой величины объясняет, почему в течение длительного времени дискретность2электрического заряда не наблюдалась. Первые теории электричества строились на представлении о заряде, как некоторой особой электрической жидкости (о молекулярной структуре настоящих жидкостей тогда тоже не было известно). Долгие споры велись о том, сколько электрических жидкостей существует, одна или две. Отголоски этих жидкостных представлений дошли до нас в многочисленных терминах − заряд перетекает (отсюда электрический ток), конденсатор обладает электрической емкостью (показывающий, сколько электрической жидкости он может вместить), и др. Электрон, а, следовательно, и элементарный заряд, был открыт только в  1897 годуанглийским физиком Дж. Дж. Томсоном. Дискретность электрического заряда проявляется только в том случае, когда заряды тел малы, сравнимы с элементарным зарядом. Не случайно Р. Милликен в своих экспериментах использовал микроскопические капельки, заряды которых составляли несколько элементарных зарядов. Во многих случаях нет необходимости учитывать дискретность электрического заряда. То есть в математическом описании перейти к непрерывному описанию распределения зарядов. В этом случае можно ввести понятие объемной плотности заряда как функции координат  ρ(x, y, z), как отношение величины заряда Δq, содержащегося в малом объеме ΔV вокруг точки с координатами (x, y, z), к величине этого объема

Это определение полностью совпадает с обсуждавшимся ранее понятием плотности «в точке». 

Элемента́рный электри́ческий заря́д — минимальная порция (квантэлектрического заряда. Равен приблизительно 1,602 176 565(35)·10−19 Кл[1] в системе СИ (и 4,803·10−10 ед. СГСЭ в системе СГС). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие.

Электризация тел- возникновение в них электрического состояния, происходит при чрезвычайно разнообразных процессах, совершаемых с этими телами. Почти всякое механическое действие, производимое с твердым телом, как, напр., трение об это тело или надавливание на него другого тела, скобление, раскалывание, сопровождается развитием электричества. Так же точно электризуются тела при многих химических действиях; некоторые вещества электризуются при отвердевании; некоторые соли весьма сильно электризуются при своем выкристаллизовании из растворов. Является электричество и в жидкостях при трении этих жидкостей о твердые тела и даже при трении их о некоторые другие жидкости. Наконец, даже простое соприкосновение двух каких-либо разнородных тел, все равно, будут ли эти тела твердые или жидкие, вызывает в обоих этих телах электрическое состояние. Во всех приведенных случаях причиной Э. тел является одно и то же, а именно прикосновение, контакт разнородных тел. Первый Александр Вольтасвоими опытами, произведенными в самые последние годы XVIII в., доказал, что при прикосновении друг с другом двух каких-либо проводящих электричество тел, но непременно отличающихся одно от другого по химическому составу, происходит Э. обоих этих тел, причем одно из них заряжается положительным электричеством, другое - отрицательным. Количества двух этих противоположных электричеств, являющихся на соприкасающихся телах, равны между собой. Вольта нашел, что металлы и другие твердые проводники, не подвергающиеся, как скажем теперь, электролизу, т. е. не разлагающиеся на химически составные части при прохождении через них электрического тока (проводники первого класса), по своей способности электризоваться при контакте могут быть расположены в известной последовательности (ряд Вольты) - так, что всякое тело при прикосновении с любым из тел, стоящих в этом ряду дальше, электризуется положительно и при прикосновении с любым из тел, ему предшествующих, электризуется отрицательно.

Билет 4:

Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекулможно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур илидавлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна).

Равновесное распределение частиц классического идеального газа по состояниям следует из уравнения Менделеева — Клапейрона, из которого можно вывести распределение газа в поле потенциальной энергии. Это распределение приводит к распределению Больцмана:

где   — среднее число частиц, находящихся в  -ом состоянии с энергией  , а константа   определяется условием нормировки:

где   — полное число частиц.

Распределение Больцмана является предельным случаем (квантовые эффекты пренебрежимо малы) распределений Ферми — Дирака и Бозе — Эйнштейна, и, соответственно, классический идеальный газ является предельным случаем Ферми-газа и Бозе-газа.

Давление идеального газа. Одним из первых и важных успехов молекулярно-кинетической теории было качественное и количественное объяснение явления давления газа на стенки сосуда.

   Качественное объяснение давления газа заключается в том, что молекулы идеального газа при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела. При столкновении молекулы со стенкой сосуда проекция   вектора скорости на ось ОХ, перпендикулярную стенке, изменяет свой знак на противоположный, но остается постоянной по модулю (рис. 82).

Поэтому в результате столкновения молекулы со стенкой проекция ее импульса на ось ОХ изменяется от   до  . Изменение импульса молекулы показывает, что на нее при столкновении действует сила  , направленная от стенки. Изменение импульса молекулы равно импульсу силы  :

 .

Во время столкновения молекула действует на стенку с силой  , равной по третьему закону Ньютона силе   по модулю и направленной противоположно. 

   Молекул газа очень много, и удары их о стенку следуют один за другим с очень большой частотой. Среднее значение геометрической суммы сил, действующих со стороны отдельных молекул при их столкновениях со стенкой сосуда, и является силой давления газа. Давление газа равно отношению модуля силы давления   к площади стенки S:

.

На основе использования основных положений молекулярно-кинетической теории было получено уравнение, которое позволяло вычислить давление газа, если известны масса m0 молекулы газа, среднее значение квадрата скорости молекул   и концентрация n молекул:

 . (24.1)

Уравнение (24.1) называют основным уравнением молекулярно-кинетической теории.    Обозначив среднее значение кинетической энергии поступательного движения молекул идеального газа  :

,

получим

 . (24.2)

Давление идеального газа равно двум третям средней кинетической энергии поступательного движения молекул, содержащихся в единице объема.

Билет 5:

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля —векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Сила Лоренца описывает воздействие электромагнитного поля на частицу.

Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы   действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда  :

.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора   (вообще говоря - разное[3] в разных точках пространства), таким образом,   - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к.   может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м].

Билет 6:

Электрический Ток в Полупроводниках

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой.

При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.

Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.

Примеси, отдающие электроны и создающие электронную проводимость, называются донорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.

Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.

Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим.

Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).

Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.

Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

Таким образом, р-п-переход обладает несимметричной проводимостью. Это свойство используется в полупроводниковых диодах, содержащих один p-n-переход и применяемых, например, для выпрямления переменного тока или детектирования.

Полупроводники находят широкое применение в современной электронной технике.

Зависимость электрического сопротивления полупроводниковых металлов от температуры используется в специальных полупроводниковых приборах - терморезисторах. Приборы, в которых используется свойство полупроводниковых кристаллов изменять свое электрическое сопротивление при освещении светом, называются фоторезисторами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]