Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_na_fiziku.docx
Скачиваний:
9
Добавлен:
26.09.2019
Размер:
914.23 Кб
Скачать

Уровни энергии

Для получения энергетических уровней в атоме водорода, в рамках модели Бора, записывается второй закон Ньютона для движения электрона по круговой орбите в поле кулоновской силы притяжения:

где m — масса электрона, e — его заряд, Z — заряд ядра и k- кулоновская константа, зависящая от выбора системы единиц. Это соотношение позволяет выразить скорость электрона через радиус его орбиты:

Энергия электрона равна сумме кинетической энергии движения и его потенциальной энергии:

Используя правило квантования Бора, можно записать:

откуда радиус орбиты выражается через квантовое число n. Подстановка радиуса в выражение для энергии даёт:

Комбинация констант

 эВ

называется постоянной Ридберга.

Билет 16:

ТЕПЛОВОЕ ДВИЖЕНИЕ

Все молекулы любого вещества непрерывно и беспорядочно (хаотически) движутся.

Движение молекул в разных телах происходит по-разному. Молекулы газов беспорядочно движутся с большими скоростями (сотни м/с) по всему объему газа. Сталкиваясь, они отскакивают друг от друга, изменяя величину и направление скоростей. Молекулы жидкости колеблются около равновесных положений ( т.к. расположены почти вплотную друг к другу) и сравнительно редко перескакивают из одного равновесного положения в другое. Движение молекул в жидкостях является менее свободным, чем в газах, но более свободным, чем в твердых телах.  В твердых телах частицы колеблются около положения равновесия. С ростом температуры скорость частиц увеличивается, поэтому хаотическое движение частиц принято называть тепловым.

ТЕМПЕРАТУРА

— величина, которая характеризует тепловое состояние тела или иначе мера «нагретости» тела. Чем выше температура тела, тем большую в среднем энергию имеют его атомы и молекулы.

Приборы, служащие для измерения температуры называются термометрами.

Принцип измерения температуры.

Температура непосредственно не измеряется! Измеряется величина, зависящая от температуры!  В современных жидкостных термометрах - это объем спирта или ртути ( в термоскопе Галилея – объем газа). Термометр измеряет собственную температуру! А, если мы хотим измерить с помощью термометра температуру какого-либо другого тела, надо подождать некоторое время, пока температуры тела и термометра уравняются, т.е. наступит тепловое равновесие между термометром и телом. В этом состоит закон теплового равновесия:  у любой группы изолированных тел через какое-то время температуры становятся одинаковыми,  т.е. наступает состояние теплового равновесия

Температура. Основное уравнение молекулярно-кинетической теории для идеального газа устанавливает связь легко измеряемого макроскопического параметра — давления — с такими микроскопическими параметрами газа, как средняя кинетическая энергия и концентрация молекул.

Но, измерив только давление газа, мы не можем узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужны измерения еще какой-то физической величины, связанной со средней кинетической энергией молекул. Такой величиной в физике является температура.

 Из повседневного опыта каждый знает, что бывают тела горячие и холодные. При контакте двух тел, из которых одно мы воспринимаем как горячее, а другое — как холодное, происходят изменения физических параметров как первого, так и второго тела. Например, твердые и жидкие тела обычно при нагревании расширяются. Через некоторое время после установления контакта между телами изменения макроскопических параметров тел прекращаются. Такое состояние тел называется тепловым равновесием. Физический параметр, одинаковый во всех частях системы тел, находящихся в состоянии теплового равновесия, называется температурой тела. Если при контакте двух тел никакие их физические параметры, например объем, давление, не изменяются, то между телами нет теплопередачи и температура тел одинакова.

Термометры. В повседневной практике наиболее распространен способ измерения температуры с помощью жидкостного термометра.

   В устройстве жидкостного термометра используется свойство расширения жидкостей при нагревании. В качестве рабочего тела обычно применяется ртуть, спирт, глицерин. Чтобы измерить температуру тела, термометр приводят в контакт с этим телом; между телом и термометром будет осуществляться теплопередача до установления теплового равновесия. Масса термометра должна быть значительно меньше масоы тела, так как в противном случае процесс измерения может существенно изменить температуру тела.

   Изменения объема жидкости в термометре прекращаются, когда между телом и термометром прекращается теплообмен. При этом температура жидкости в термометре равна температуре тела.

 Отметив на трубке термометра положение конца столба жидкости при помещении термометра в тающий лед, а затем в кипящую воду при нормальном давлении и разделив отрезок между этими отметками на 100 равных частей, получают температурную шкалу по Цельсию. Температура тающего льда соответствует 0 °С (рис. 83), кипящей воды — 100 °C (рис. 84). Изменение длины столба жидкости в термометре на одну сотую длины между отметками 0 и 100 °С соответствует изменению температуры на 1 °С.

Существенным недостатком способа измерения температуры с помощью жидкостных термометров является то, что шкала температуры при этом оказывается связанной с конкретными физическими свойствами определенного вещества, используемого в качестве рабочего тела в термометре,— ртути, глицерина, спирта. Изменение объема различных жидкостей при одинаковом нагревании оказывается несколько различным. Поэтому ртутный и глицериновый термометры, показания которых совпадают при 0 и 100 °С, дают разные показания при других температурах.

Газы в состоянии теплового равновесия. Для того чтобы найти более совершенный способ определения температуры, нужно найти такую величину, которая была бы одинаковой для любых тел, находящихся в состоянии теплового равновесия.

   Экспериментальные исследования свойств газов показали, что для любых газов, находящихся в состоянии теплового равновесия, отношение произведения давления газа на его объем к числу молекул оказывается одинаковым:

. (25.1)

Этот опытный факт позволяет принять величину   в качестве естественной меры температуры.    Так как  , то с учетом основного уравнения молекулярно-кинетической теории (24.2) получим

 . (25.2)

Следовательно, средняя кинетическая энергия молекул любых газов, находящихся в тепловом равновесии, одинакова. Величина  равна двум третям средней кинетической энергии беспорядочного теплового движения молекул газа и выражается в джоулях.

   В физике обычно выражают температуру в градусах, принимая, что температура T в градусах и величина  связаны уравнением

 , (25.3)

где k — коэффициент пропорциональности, зависящий от выбора единицы температуры.

Отсюда получаем

 . (25.4)

Последнее уравнение показывает, что имеется возможность выбрать температурную шкалу, не зависящую от природы газа, используемого в качестве рабочего тела.

 Практически измерение температуры на основании использования уравнения (25.4) осуществляется с помощью газового термометра (рис. 85). Устройство его таково: в сосуде постоянного объема находится газ, количество газа остается неизменным. При постоянных значениях объема V и числа молекул N давление газа, измеряемое манометром, может служить мерой температуры газа, а значит, и любого тела, с которым газ находится в тепловом равновесии.

Абсолютная шкала температур. Шкала измерения температуры в соответствии с уравнением (25.4) называетсяабсолютной шкалой. Ее предложил английский физик У. Кельвин (Томсон) (1824—1907), поэтому шкалу называют также шкалой Кельвина.

 До введения абсолютной шкалы температур в практике получила широкое распространение шкала измерения температуры по Цельсию. Поэтому единица температуры по абсолютной шкале, называемая кельвином (К), выбрана равной одному градусу по шкале Цельсия:

1 К = 1 °С. (25.5)

Абсолютный нуль температуры. В левой части уравнения (25.4) все величины могут иметь только положительные значения или быть равными нулю. Поэтому абсолютная температура T может быть только положительной или равной нулю. Температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю, называется абсолютным нулем температуры.

Постоянная Больцмана. Значение постоянной k в уравнении (25.4) можно найти по известным значениям давления и объема газа с известным числом молекул N при двух значениях температуры T0 и T1:

,          ,

. (25.6)

Как известно, 1 моль любого газа содержит примерно   молекул и при нормальном давлении   занимает объем  .

   Опыты показали, что при нагревании любого газа при постоянном объеме от 0 до 100° С его давление возрастает от   до  . Подставляя эти значения в уравнение (25.6), получаем

;

.

Коэффициент k - называется постоянной Болъцмана, в честь австрийского физика Людвига Больцмана (1844—1906), одного из создателей молекулярно-кинетической теории.

Связь абсолютной шкалы и шкалы Цельсия. Уравнение (25.4) позволяет по известному значению объема V0одного моля газа при температуре 0 °С и нормальном давлении   и найденному значению постоянной Больцмана установить связь между значениями температуры t по шкале Цельсия и температуры T по абсолютной шкале. При температуре 0 °С температура T по абсолютной шкале равна

,

.

Мы получили, что температура 0 °С по шкале Цельсия соответствует температуре 273 К по абсолютной шкале.

   Так как единица температуры по абсолютной шкале 1 К выбрана равной единице температуры по шкале Цельсия 1 °С, то при любой температуре t по Цельсию значение абсолютной температуры T выше на 273 градуса:

T = t + 273 . (25.7)

Из уравнения (25.7) следует, что абсолютный нуль соответствует — 273 °С (более точно, — 273,15 °С). Соответствие шкалы Цельсия и абсолютной шкалы температур представлено на рисунке 86.

Температура — мера средней кинетической энергии молекул. Из уравнений (25.2) и (25.4) следует равенство

 . (25.8)

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре.

   Из уравнений (24.2) и (25.8) можно получить, что

p = nkT. (25.9)

Уравнение (25.9) показывает, что при одинаковых значениях температуры и концентрации молекул давление любых газов одинаково, независимо от того, из каких молекул они состоят.

Билет 17: Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют несколько эквивалентных формулировок второго начала термодинамики:

  • Постулат Клаузиуса«Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему»[1] (такой процесс называется процессом Клаузиуса).

  • Постулат Томсона (Кельвина)«Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло   у нагревателя, отдав   холодильнику и совершив при этом работу  . После этого воспользуемся процессом Клаузиуса и вернем тепло   от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъёма теплоты от нагревателя, то есть постулат Томсона тоже неверен.

С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.

Таким образом, постулаты Клаузиуса и Томсона эквивалентны.

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

  • «Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии).

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

Второе начало термодинамики в аксиоматической формулировке Рудольфа Юлиуса Клаузиуса (R. J. Clausius, 1865) имеет следующий вид[2]:

Для любой квазиравновесной термодинамической системы существует однозначная функция термодинамического состояния  , называемая энтропией, такая, что ее полный дифференциал  .

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]