Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Арх. В.С..doc
Скачиваний:
77
Добавлен:
24.09.2019
Размер:
3.5 Mб
Скачать

7.18. Способы коммутации в ткс

В любой сети связи всегда применяется какой-либо способ коммутации, обеспечивающий с помощью коммутаторов доступность имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети, каждый из которых соединяется с ближайшим коммутатором индивидуальной линией связи. В любой момент времени эта линия используется только одним абонентом, а между коммутаторами линии связи используются совместно многими абонентами.

Используются три принципиально различных способа коммутации абонентов в сетях: коммутация каналов, коммутация сообщений и коммутация пакетов. Сети с коммутацией сообщений и коммутацией пакетов относятся к типу сетей с промежуточным хранением передаваемой информации. Сети с коммутацией каналов и коммутацией пакетов разделяются, кроме того, на два класса – на сети с динамической коммутацией и сети с постоянной коммутацией.

В сетях с динамической коммутацией соединение абонента с любым другим устанавливается сетью по инициативе абонента, продолжается определенное время (от нескольких секунд до нескольких часов) и завершается также по инициативе абонента по окончании обмена информацией. Такой режим работы поддерживают телефонные сети общего пользования, локальные сети, сети TCP/IP.

В сетях с постоянной коммутацией соединение между взаимодействующими пользователями устанавливается персоналом сети на длительное время (несколько месяцев и более). Режим постоянной коммутации популярен в сетях технологии SDH, где создаются выделенные каналы связи с пропускной способностью в несколько гигабит в секунду.

Некоторые сети поддерживают оба режима работы, например сети X.25 и АТМ.

Коммутация каналов. При коммутации каналов между связываемыми конечными пунктами на протяжении всего временного интервала соединения обеспечивается обмен в реальном масштабе времени, причем биты передаются с неизменной скоростью по каналу с постоянной полосой пропускания. Между абонентами устанавливается сквозной составной канал связи до начала передачи информации. Этот канал формируется из отдельных участков с одинаковой пропускной способностью. Прохождение отдельного сигнала вызова обеспечивается с помощью последовательного включения нескольких коммутационных устройств, размещаемых в центрах коммутации каналов (ЦКК). Каждое устройство резервирует за собой физическое соединение между одним входящим и одним исходящим каналами. Если при установлении сквозного канала связи занята вызываемая сторона или хотя бы одно из коммутационных устройств в цепочке прохождения сигнала вызова, последний будет блокироваться, и абонент, инициировавший вызов, должен спустя некоторое время его повторить.

Время установления сквозного канала связи обычно бывает большим из-за необходимости организации взаимодействия значительного числа устройств коммутации. После установления такого канала ЦКК выполняют минимальное число функций, хотя при этом может передаваться большой объем информации. Следовательно, при использовании метода коммутации каналов передача информации обеспечивается двумя основными составляющими в расходной части ресурсов: ресурсами для организации вызова и ресурсами для поддержания в ЦКК коммутационных устройств или для организации распределения временных каналов. Первая составляющая не зависит от объема передаваемой информации, а вторая – прямо пропорциональна интервалу времени, в течение которого происходит соединение.

Коммутаторы и соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов, поэтому они должны быть высокоскоростными и поддерживать одну из двух техник мультиплексирования абонентских каналов:

  • технику частотного мультиплексирования (FDM), когда для разделения абонентских каналов используется модуляция высокочастотного несущего синусоидального сигнала низкочастотным сигналом, порождаемым звуковыми колебаниями (частотное разделение характерно, таким образом, для аналоговой модуляции сигналов);

  • технику мультиплексирования с разделением времени (TDM), когда аппаратура TDM-сетей (мультиплексоры, коммутаторы, демультиплексоры) работает в режиме разделения времени, поочередно обслуживая в течение цикла своей работы все абонентские каналы. Временное разделение характерно для цифрового кодирования. Сети TDM требуют синхронной работы всего оборудования, поэтому такая техника мультиплексирования имеет и другое название – техника синхронного режима передачи (STM). В настоящее время практически все данные (голос, изображение, компьютерные данные) передаются в цифровой форме, поэтому выделенные каналы TDM-технологии, обеспечивающие нижний уровень для передачи цифровых данных, являются универсальными каналами для построения сетей любого типа: телефонных, компьютерных, телевизионных.

В качестве недостатков метода коммутации каналов можно указать следующие:

  • большое время установления сквозного канала связи из-за возможного ожидания освобождения отдельных его участков;

  • необходимость повторной передачи сигнала вызова из-за занятости вызываемой стороны или какого-либо коммутационного устройства в цепочке прохождения этого сигнала (в связи с этим система, в которой реализуется метод коммутации каналов, относится к классу систем с потерей запросов на обслуживание);

  • отсутствие возможности выбора скоростей передачи информации;

  • наращивание функций и возможностей сети ограничено;

  • не обеспечивается равномерность загрузки каналов связи (возможности по сглаживанию загрузки весьма ограничены).

Преимущества метода коммутации каналов:

  • отработанность технологии коммутации каналов (первое коммутационное устройство появилось еще в конце XIX-го века);

  • возможность работы в диалоговом режиме и в реальном масштабе времени;

  • обеспечение как битовой прозрачности, так и прозрачности по времени независимо от числа ЦКК между абонентами;

  • гарантированная пропускная способность сети после установления соединения (это важно при передаче голоса, изображения, управления объектами в реальном масштабе времени);

  • довольно широкая область применения. Сети с коммутацией каналов хорошо приспособлены для коммутации потоков данных постоянной скорости, когда единицей коммутации является долговременным синхронный поток данных между взаимодействующими абонентами.

Коммутация с промежуточным хранением. Отметим особенности всех методов коммутации с промежуточным хранением. Для них характерно, что заранее, до начала передачи информации, сквозной канал между отправителем и получателем не устанавливается. Вызывающий объект посредством набора номера или через выделенную линию связывается только с ближайшим узлом сети и передает ему информационные биты. В каждом узле имеется коммутатор, построенный на базе коммуникационной ЭВМ с запоминающим устройством (ЗУ). Передаваемая информация должна храниться в каждом узле по пути к пункту назначения, причем задержка в хранении, как правило, будет различной для узлов. Наличие ЗУ в промежуточных узлах связи предотвращает потерю передаваемой информации, вследствие чего системы, реализующие рассматриваемые методы коммутации, относятся к классу систем без потерь запросов на обслуживание. Одним из показателей этих методов является возможность согласования скоростей передачи данных между пунктами отправления и назначения, которое обеспечивается наличием в сети эффективных развязок, реализуемых созданием буферных ЗУ в узлах связи. Наконец, для сетей с промежуточным хранением обязательным требованием является битовая прозрачность. Требование же временной прозрачности, как правило, ими не гарантируется.

Коммутация сообщений была преобладающим методом передачи данных в 60-70 гг. и до сих пор используется в некоторых областях (в электронной почте, электронных новостях, телеконференциях, телесеминарах). Как и все методы коммутации с промежуточным хранением, технология коммутации сообщений относится к технологии типа «запомнить и послать». Кроме того, технология коммутации сообщений обычно предусматривает отношение «главный – подчиненный». Коммутатор (коммуникационная ЭВМ) в центре коммутации сообщений (ЦКС) выполняет регистрацию и выбор при управлении входящими и выходящими потоками. Здесь не рассматриваются интерактивный режим и работа в реальном масштабе времени, однако данные через коммутатор могут передаваться на очень высокой скорости с соответствующим определением уровней приоритетов для различных типов потоков данных. Высокоприоритетные потоки задерживаются в очереди на обслуживание на более короткое время по сравнению с низкоприоритетными потоками, что позволяет обеспечить интерактивные прикладные задачи.

Важно отметить, что при коммутации сообщений сообщение, независимо от его длины (разброс в длине сообщений может быть достаточно велик), целиком сохраняет свою целостность как единичный объект в процессе его прохождения от одного узла к другому вплоть до пункта назначения. Более того, транзитный узел не может начинать дальнейшую передачу части сообщения, если оно еще принимается. По своему влиянию на задержки это равноценно низкому уровню использования ресурсов сети.

Таким образом, коммутация сообщений предназначена для организации взаимодействия пользователей в режиме off-line, при котором не ожидается немедленной реакции на принятое сообщение.

Недостатки метода коммутации сообщений:

  • необходимость реализации достаточно серьезных требований к емкости буферных ЗУ в узлах связи для приема больших сообщений, что обусловливается сохранением их целостности;

  • недостаточные возможности по реализации диалогового режима и работы в реальном масштабе времени при передаче данных;

  • выход из строя всей сети при отказе коммутатора, так как через него проходят все потоки данных (это характерно для структуры «главный – подчиненный»);

  • коммутатор сообщений является потенциально узким местом по пропускной способности;

  • каналы передачи данных используются менее эффективно по сравнению с другими методами коммутации с промежуточным хранением.

Преимущества метода:

  • отсутствие необходимости в заблаговременном (до начала передачи данных) установлении сквозного канала связи между абонентами;

  • возможность формирования маршрута из отдельных участков с различной пропускной способностью;

  • реализация различных систем обслуживания запросов с учетом их приоритетов;

  • возможность сглаживания пиковых нагрузок путем запоминания низкоприоритетных потоков в периоды этих нагрузок;

  • отсутствие потерь запросов на обслуживание.

Коммутация пакетов, появившаяся в 70-х гг., сочетает в себе преимущества коммутации каналов и коммутации сообщений. Ее основные цели: обеспечение полной доступности сети и приемлемого времени реакции на запрос для всех пользователей, сглаживание асимметричных потоков между многими пользователями, обеспечение мультиплексирования возможностей каналов связи и портов компьютеров сети, рассредоточение критических компонентов (коммутаторов) сети.

При коммутации пакетов пользовательские данные (сообщения) перед началом передачи разбиваются на короткие пакеты фиксированной длины. Каждый пакет снабжается протокольной информацией: коды начала и окончания пакета, адреса отправителя и получателя, номер пакета в сообщении, информация для контроля достоверности передаваемых данных в промежуточных узлах связи и в пункте назначения. Будучи независимыми единицами информации, пакеты, принадлежащие одному и тому же сообщению, могут передаваться одновременно по различным маршрутам в составе дейтаграмм. Управление передачей и обработкой пакетов в узлах связи осуществляется центрами коммутации пакетов (ЦКП) с помощью компьютеров. Длительное хранение пакетов в ЦКП не предполагается, поэтому пакеты доставляются в пункт назначения с минимальной задержкой, где из них формируется первоначальное сообщение.

Описанный режим передачи пакетов, предполагающий независимую маршрутизацию каждого пакета, называется дейтаграммным.

В отличие от коммутации сообщений технология коммутации пакетов позволяет:

  1. увеличить количество подключаемых станций (терминалов), так как здесь больше коммутаторов;

  2. легче преодолеть трудности, связанные с подключением к коммутаторам дополнительных линий связи;

  3. осуществить альтернативную маршрутизацию (в обход поврежденных или занятых узлов связи и каналов), что создает повышенные удобства для пользователей;

  4. существенно сократить время на передачу пользовательских данных, повысить пропускную способность сети и повысить эффективность использования сетевых ресурсов.

О дной из концепций коммутации пакетов является мультиплексирование с помощью разделения времени использования одного и того же канала многими пользователями, что повышает эффективность функционирования ТКС. Логика коммутации пакетов позволяет мультиплексировать многие пользовательские сеансы на один порт компьютера. Пользователь воспринимает порт как выделенный, в то время как он используется как разделенный ресурс. Мультиплексирование порта и канала называют виртуальным каналом, а такой режим работы – передачей пакетов по виртуальному каналу. Коммутация пакетов и мультиплексирование обеспечивают сглаживание асимметричных потоков в каналах связи.

Стоимость организации вызова для пакетной коммутации ниже по сравнению с соответствующей характеристикой метода коммутации каналов. Но с увеличением объема передаваемой информации стоимостная характеристика для пакетной коммутации возрастает быстрее, чем для коммутации каналов, что объясняется необходимостью больших ресурсов для обработки пересылаемой информации.

В настоящее время пакетная коммутация является основной для передачи данных.

Символьная коммутация (иначе: субпакетная коммутация, или метод общего пакета) представляет собой разновидность пакетной коммутации. Она применяется в случае, когда пакет содержит информационные биты, принадлежащие различным пользователям.

При пакетной коммутации приходится находить компромиссное решение, удовлетворяющее двум противоречивым требованиям. Первое из них – уменьшение задержки пакета в сети, обеспечиваемое уменьшением его длины, и второе – обеспечение повышения эффективности передачи информации, достигаемое, наоборот, увеличением длины пакета (при малой длине пакета длина его заголовка становится неприемлемо большой, что снижает экономическую эффективность передачи). В сети с пакетной коммутацией максимально разрешенный размер пакета устанавливается на основе трех факторов: распределения длин пакетов, характеристики среды передачи (главным образом, скорости передачи) и стоимости. Для каждой передающей среды выбирается свой оптимальный размер пакета.

При использовании символьной коммутации оптимальный размер пакета для конкретной передающей среды сохраняется с одновременным уменьшением времени задержки пакета в сети. Это достигается за счет приема от нескольких пользователей по небольшому количеству символов (информационных бит) и загрузки их в один пакет общего доступа.

Анализ рассмотренных коммутационных технологий позволяет сделать вывод о возможности разработки комбинированного метода коммутации, основанного на использовании в определенном сочетании принципов коммутации сообщений, пакетов и символьной коммутации и обеспечивающего более эффективное управление разнородным трафиком.

7.19. Сети и технологии Х.25 и Frame Relay

Ниже даются краткие сведения о наиболее распространенных телекоммуникационных системах, или территориальных сетях связи. К ним относятся Х.25, Frame Relay (FR), IP, ISDN, SDH, АТМ (сведения о сетях IP даются при рассмотрении глобальной сети Интернет). При этом обращается внимание на их «прогрессивность», т. е. возможность предоставления полного сервиса в настоящее время и степень актуальности в перспективе. Особенно важным преимуществом той или иной сетевой технологии является ее возможность наиболее полно использовать имеющуюся в распоряжении пользователя полосу пропускания канала связи и адаптироваться к качеству канала.

Сети и технологии Х.25. Сетями Х.25 называются сети, доступ к которым производится в соответствии с рекомендациями Международного консультативного комитета по телефонии и телеграфии (МККТТ), первый вариант которой появился в 1976 г. Эта рекомендация описывает интерфейс доступа пользователя в сеть передачи данных, а также интерфейс взаимодействия с удаленным пользователем через систему передачи данных (СПД). Передача данных в сети Х.25 производится по протоколам, описанным в рекомендации Х.25. С момента выпуска первого варианта рекомендации Х.25 все стандарты были практически проверены, расширены и дополнены, и сегодня достигнут высокий уровень совместимости оборудования, выпускаемого различными фирмами для сетей Х.25.

Несмотря на появление новых интегральных технологий сетей связи, рассчитанных на высокоскоростные каналы связи, сети Х.25 все еще являются наиболее распространенными СПД. Это объясняется тем, что именно сети Х.25 с наибольшим основанием можно сравнить с телефонными сетями: установив соединение компьютера с ближайшим узлом сети Х.25, можно связаться с любым из многих тысяч пользователей сетей Х.25 по всему миру (для этого надо лишь знать его сетевой адрес) точно так же, как подняв трубку телефонного аппарата, подключенного к ближайшей АТС, можно соединиться практически с любым абонентом. Технология Х.25 особенно актуальна для России и других стран, где пока отсутствует развитая инфраструктура высокоскоростных первичных каналов связи.

На основе технологий Х.25 построено большинство эксплуатируемых в настоящее время СПД с коммутацией пакетов, предназначенных для организации и обеспечения надежной передачи данных в условиях разветвленных территориальных сетей на базе низко– и среднескоростных каналов. При этом за счет повторной передачи искаженных кадров между каждой парой соседних узлов сети обеспечивается достоверная и упорядоченная передача данных. Однако в сети с каналами низкого качества из-за повторных передач возникают нерегламентированные и непостоянные задержки передаваемых данных, поэтому передача трафика, чувствительного к задержкам (например, оцифрованного голоса) по сетям Х.25 с удовлетворительным качеством невозможна.

Рекомендация Х.25 описывает три уровня протоколов: физического, канального и сетевого. Они реализуют функции соответственно физического, канального, сетевого и частично транспортного уровней модели взаимодействия открытых систем (BOC – OSI).

Физический уровень, широко представленный в оборудовании массового спроса, описывает уровни сигналов и логику взаимодействия на уровне физического интерфейса.

Канальный уровень, также широко представленный в оборудовании (например, в модемах), отвечает за эффективную и надежную передачу данных в соединении «точка-точка», т. е. между соседними узлами сети Х.25. На этом уровне осуществляется защита от ошибок при передаче между соседними узлами, управление потоком данных и, кроме того, обеспечивается получение оптимального по скорости передачи режима в зависимости от протяженности канала между двумя точками (времени задержки в канале) и качества канала (вероятности искажения информации при передаче), что важно при оценке эффективности функционирования двухточечного соединения.

Для реализации указанных выше функций поток информации разбивается на кадры (frame), каждый из которых представляет собой организованную определенным образом последовательность битов. Кадр обрамляется «флагами» (уникальными последовательностями битов, являющимися разделителем между кадрами) и состоит из служебных полей (поля адреса, поля управления с циклическим номером кадра, поля проверочной последовательности кадра) и информационного поля для информационных кадров. Длину кадра можно менять при настройке параметров протокола к физическим характеристикам линии связи. Чем короче кадр, тем меньше вероятность его искажения при передаче. С другой стороны, если линия хорошего качества, то информацию лучше передавать более длинными кадрами, обеспечивающими уменьшение процента избыточной информации (флаги, служебные поля кадра).

Наконец, на сетевом уровне, определяющем специфику сетей Х.25, производится маршрутизация пакетов (на этом уровне информация также структурируется, т. е. разбивается на «порции», называемые «пакетами») и доведение информации от «точки входа в сеть» до «точки выхода» из нее. Структура пакета во многом аналогична структуре кадра. При передаче пакет помещается в поле данных информационного кадра (кадра канального уровня).

В сетях Х.25 реализуется метод «коммутации пакетов», в соответствии с которым перед передачей информации от одного абонента к другому между ними сначала устанавливается виртуальное (логическое) соединение, т. е. происходит обмен пакетами «запрос вызова» – «вызов принят», после чего производится обмен информацией. Виртуальные соединения могут быть как постоянными, так и коммутируемыми, когда соединение устанавливается под каждый сеанс обмена информацией. Число виртуальных соединений, которые могут одновременно поддерживаться на базе одного физического канала, зависит от конкретного типа оборудования, используемого для поддержания таких соединений.

Доступ пользователей к сети Х.25 осуществляется в одном из двух режимов – в пакетном или монопольном. Доступ с персонального компьютера (ПК) в сеть в пакетном режиме реализуется путем установления в ПК специальной платы, обеспечивающей обмен данными в соответствии со стандартом Х.25. Подключение ЛКС через сеть Х.25 осуществляется с помощью сетевых плат (например, производимых компаниями Microdyne, Newport Systems Solutions и др.) или для этого могут использоваться мосты-маршрутизаторы удаленного доступа, включенные в виде отдаленных устройств и поддерживающие протокол Х.25. Преимущество таких устройств по сравнению с встроенными в компьютер платами (помимо большей производительности) состоит в том, что они не требуют установки специального программного обеспечения, а сопрягаются с ЛКС по стандартному интерфейсу локальной сети, что позволяет реализовать более гибкие и универсальные решения. Подключение пользовательского оборудования к сети в пакетном режиме удобно, когда требуется многопользовательский доступ к этому оборудованию через сеть.

Подключение к сети Х.25 в монопольном режиме производится по стандартам Х.3, Х.28, Х.29, которые определяют функционирование специальных устройств доступа в сеть – «сборщиков-разборщиков пакетов» – ПАД («packet assembler-dissasembler»). Эти устройства используются для доступа в сеть абонентов в асинхронном режиме обмена информацией, т. е. через последовательный порт компьютера (непосредственно или с применением модемов). ПАД обычно имеет несколько асинхронных портов и один синхронный порт (порт Х.25). ПАД накапливает поступающие по асинхронным портам данные, упаковывает их в пакеты и передает через порт Х.25. В разных сетях могут быть установлены различные значения параметров передачи по каналам Х.25 (длина кадра и пакета, система адресации и др.). Для обеспечения стыковки этих сетей была разработана рекомендация Х.75, определяющая правила согласования параметров при переходе из одной сети в другую. Сопряжение сетей обычно производится через ЦКП, в котором реализована поддержка шлюзовых функций.

Метод коммутации пакетов, лежащий в основе сетей Х.25, определяет основные преимущества таких сетей, а следовательно, и области их применения. Преимущества сетей Х.25 заключаются в следующем:

1. Сети Х.25 позволяют в режиме реального времени разделять один и тот же физический канал между несколькими абонентами. Благодаря этому во многих случаях оказывается экономически выгодней для передачи данных пользоваться сетью Х.25, производя оплату за каждый байт переданной информации, а не оплачивать время использования телефонной линии. Метод разделения физического канала между абонентами в сетях Х.25 называют еще логическим, или статистическим уплотнением (в отличие от временного разделения канала). При статистическом разделении канала нет строго регламентированной степени загрузки канала каждым абонентом в определенный момент времени. Эффективность использования статистического уплотнения зависит от статистических или вероятностных характеристик уплотняемых потоков информации. Имеется большой опыт эффективного использования сетей Х.25 для широкого спектра задач передачи данных, когда трафик в сети не является равномерным во времени: обмен сообщениями между пользователями, обращение большого числа пользователей к удаленной базе данных или к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 128 Кбит/с), объединение удаленных кассовых аппаратов или банкоматов.

2. Сети Х.25 позволяют передавать оптимальным образом данные по выделенным и коммутируемым каналам телефонной сети общего пользования. Критериями оптимизации являются максимально возможные на этих каналах скорость и достоверность передачи данных.

3. В сетях Х.25 имеется механизм альтернативной маршрутизации, с помощью которого, помимо основного маршрута, задается ряд альтернативных (резервных) маршрутов, за счет чего значительно увеличивается надежность работы сети. Однако это означает, что между любыми двумя точками подключения пользователя к сети должно быть, по крайней мере, два различных маршрута.

При всех достоинствах сетевой технологии Х.25 у нее есть и свои довольно серьезные ограничения:

  • невозможность передавать по сетям Х.25 такие виды информации, как голос и видеоинформация;

  • существенное ограничение скорости передачи, основной причиной которого является наличие в таких сетях развитых механизмов коррекции ошибок. Эти механизмы требуют подтверждения информации между каждыми соседними узлами сети, что приводит к значительным задержкам распространения информации. Поэтому технология Х.25 обычно применяется в сетях, использующих каналы связи со скоростью передачи не более 128 Кбит/с.

Указанные ограничения преодолены в технологии Frame Relay.

С ети и технологии Frame Relay (ретрансляция кадров). Сетью Frame Relay (в дальнейшем – FR) называется сеть коммутации кадров, в которой используется технология (протокол) передачи данных одноименного названия [40]. Протокол FR – это интерфейс доступа к сетям быстрой коммутации пакетов. Он позволяет эффективно передавать крайне неравномерно распределенный во времени трафик.

Отличительные особенности протокола FR: малое время задержки при передаче информации через сеть, высокие скорости передачи, «высокая степень связности», эффективное использование полосы пропускания. По сетям FR возможна передача не только собственно данных, но и оцифрованного голоса.

Для оценки FR-сетей (как и АТМ-сетей) важным фактором является не столько высокая «физическая» скорость передачи данных (т. е. скорости «физических» каналов), сколько реализация методов статистического уплотнения информации, обеспечивающих существенное повышение информационной скорости передачи в условиях дефицита физической пропускной способности канала, а также наличие интерфейсов для эффективного подключения к сети различных типов оконечных пользовательских устройств.

Протокол FR выполняет функции первого, частичного второго и третьего уровней модели ВОС. Он позволяет устанавливать соединение между взаимодействующими узлами сети, что аналогично соединению по Х.25 в случае, когда используется постоянное виртуальное соединение (PVC). Внутри каждого физического канала может быть создана совокупность PVC (логических каналов), что и объясняет «высокую степень связности», обеспечиваемую протоколом FR. Что касается коммутируемых виртуальных соединений (SVC), то их использование в FR-сетях описывается специальными протоколами.

Сети FR могут выступать альтернативой сетей Х.25. Например, ЛКС могут подключаться к сети непосредственно по интерфейсу FR, и тогда FR-сеть выполняет те же функции по обеспечению взаимодействия удаленных ЛКС, что и сеть Х.25. В других случаях сеть FR выступает в качестве высокоскоростной магистрали для объединения ряда сетей Х.25. Такое решение легко реализуется, так как большинство современных устройств центров коммутации пакетов сетей Х.25 оборудованы портами FR.

В отличие от сетей Х.25, где на сетевом уровне обеспечивается гарантированная передача пакетов (в случае искажения при передаче какого-либо пакета происходит его повторная передача), кадр FR не содержит переменных нумераций передаваемых и подтверждаемых кадров. При межузловом обмене информацией в сетях FR ошибочные кадры просто «выбрасываются», их повторная передача средствами FR не происходит. Для обеспечения гарантированной и упорядоченной передачи кадров необходимо использовать либо протоколы более высокого уровня (например, протокол ТСР/IР), либо дополнение к протоколу FR (например, Q.922).

Кадр FR-сети имеет минимальную избыточность, т. е. доля служебной информации в кадре по отношению к передаваемым данным пользователя минимальна. Это способствует сокращению времени на передачу фиксированного объема информации. Кроме того, в сети FR может производиться маршрутизация своими средствами (без задействования механизмов маршрутизации по Х.25 или по протоколу IP), что значительно увеличивает скорость маршрутизации. Однако такой эффект достигается только при использовании каналов, качество которых соответствует требованиям технологии FR. В противном случае сравнительно много кадров будут передаваться с ошибкой, и потребуется повторная передача кадров, обеспечиваемая дополнительными средствами. Это снизит информационную скорость передачи информации и более эффективной в этом случае станет сеть Х.25.

Эффективность технологии FR достигается также использованием специфических механизмов, управляющих загрузкой сети. Эти механизмы обеспечивают практически гарантированное время доставки кадров через сеть и одновременно дают возможность сети адаптироваться к крайне неравномерным во времени типам трафика (например, к трафику ЛКС).

Стремительному развитию технологии FR и повышению ее эффективности способствует ряд факторов, в частности, улучшение качества каналов связи, использование современного многофункционального каналообразующего оборудования. К новому классу такого оборудования относятся мультимедийные пакетные коммутаторы (МПК).

Коммутаторы МПК, использующие технологию FR для транспортировки информации, совмещают несколько функций:

  • статистическое уплотнение каналов передачи данных, при котором фиксированные промежутки времени в уплотняемом канале не предоставляются отдельно каждому каналу, как это имеет место при использовании метода временного уплотнения; информация каждого канала разбивается на отдельные блоки, к блоку прибавляются заголовок, содержащий идентификатор соответствующего канала, и хвост, что образует единицу передачи информации – кадр, с помощью которого могут передаваться все виды трафика. Основные преимущества такого уплотнения: динамическое распределение пропускной способности уплотненного канала связи в зависимости от активности в каналах передачи данных, возможность предоставления пропускной способности по требованию, возможность установки приоритетов для различных видов трафика;

  • коммутация и передача различных видов трафика;

  • управление потоком информации и установка приоритетов;

  • поддержка функций телефонных станций. К функциям АТС, выполняемым МПК, относятся оцифровка и коммутация голоса, передача факсимильных сообщений. Для технологии FR характерным является возможное увеличение задержки при передаче голоса по сравнению с обычной телефонной сетью. Устранить это явление можно путем установления более высокого приоритета для голосового трафика и применения фрагментации кадров.

Распространению технологии FR способствует также наличие стандартов, обеспечивающих совместимость сетей FR с другими сетями. Например, имеется стандарт IETF 1294 для преобразования пакетов TCP/IP в кадры FR. Есть стандарты, обеспечивающие совместимость FR с самыми высокопроизводительными и современными сетями – сетями АТМ. При «входе»в сеть АТМ длинные кадры FR разбиваются на короткие, размещаемые внутри АТМ-ячеек, а при «выходе» из сети АТМ из ячеек АТМ-сети извлекаются фрагменты кадров FR и из них собираются полные кадры FR.

В настоящее время за рубежом, особенно в США, наблюдается стремительное развитие сетей FR. За один 1996-й год число пользователей этих сетей выросло более чем в три раза. В начале 1997 г. около 1800 фирм США строили свои корпоративные сети на базе магистральных сетей FR. Наиболее распространенные способы доступа к сетям FR: использование выделенных линий; через сети Х.25 по обычным коммутируемым телефонным линиям; через ISDN для передачи данных и голоса.

В России большинство сетей передачи данных общего пользования также предоставляют пользователям FR-сервис. Основная проблема с реализацией магистральной сети FR заключается в том, что те магистральные междугородние каналы, которые построены на базе телефонных линий (линий тональной частоты), не обеспечивают необходимое для сети FR качество передачи. Для построения сетей FR самые широкие возможности имеют те предприятия, решения которых основаны на базе оптоволоконных или спутниковых каналов связи.

Технология FR и в будущем сохранит свои преимущества и актуальность, поскольку она обеспечивает идеальный доступ к высокоскоростной магистральной АТМ-сети по низкоскоростным каналам связи. Эта технология в настоящее время является наиболее эффективной для приложений, связанных с интеграцией неравномерного (пульсирующего) трафика локальных сетей и чувствительной к задержке голосовой информации.