Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Арх. В.С..doc
Скачиваний:
77
Добавлен:
24.09.2019
Размер:
3.5 Mб
Скачать

21.3.Таблица 8.

Характеристики

22.Тип технологии

FDDI

Ethernet

Token Ring

Пропускная способность

100

10

16

Топология

Двойное кольцо

«Шина», «звезда»

«Звезда», «кольцо»

Метод доступа

Маркерный, доля от времени оборота маркера

CSMA/CD

Маркерный, приоритетная система резервирования

Среда передачи данных

Оптоволокно,

неэкранированная витая пара

Толстый коаксиал, тонкий коаксиал, витая пара, оптоволокно

Экранированная и неэкранированная витая пара,

оптоволокно

Максимальная длина сети (без мостов)

200 км (100 км на кольцо)

2500 м

4000 м

Максимальное расстояние между узлами

2 км

2500 м

100 м

Максимальное количество узлов

500

1024

260

Технологии Fast Ethernet и 100VG-AnyLAN. Обе эти технологии не являются самостоятельными стандартами и рассматриваются как развитие и дополнение технологии Ethernet, реализованное соответственно в 1995 и 1998 годах. Новые технологии Fast Ethernet (стандарт 802.3и) и 100VG-AnyLAN (стандарт 802.3z) имеют производительность 100 Мбит/с и отличаются степенью преемственности с классическим Ethernet.

В стандарте 802.3и сохранен метод случайного доступа CSMA/CD и тем самым обеспечена преемственность и согласованность сетей 10 Мбит/с и 100 Мбит/с.

В технологии 100VG-AnyLAN используется совершенно новый метод доступа – Demand Priority (DP), приоритетный доступ по требованию. Эта технология существенно отличается от технологии Ethernet.

Отметим особенности технологии Fast Ethernet и ее отличия от технологии Ethernet:

  • структура физического уровня технологии Fast Ethernet более сложная, что объясняется использованием трех вариантов кабельных систем: волоконно-оптический кабель, витая пара категории 5 (используются две пары), витая пара категории 3 (используются четыре пары). Отказ от коаксиального кабеля привел к тому, что сети этой технологии всегда имеют иерархическую древовидную структуру;

  • диаметр сети сокращен до 200 м, время передачи кадра минимальной длины уменьшено в 10 раз за счет увеличения скорости передачи в 10 раз;

  • технология Fast Ethernet может использоваться при создании магистралей локальных сетей большой протяженности, но только в полудуплексном варианте и совместно с коммутаторами (полудуплексный вариант работы для этой технологии является основным);

  • для всех трех спецификаций физического уровня, отличающихся типом используемого кабеля, форматы кадров отличаются от форматов кадров технологий 10-мегабитного Ethernet;

  • признаком свободного состояния передающей среды является не отсутствие сигналов, а передача по ней специального символа в кодированном виде;

  • для представления данных при передаче по кабелю и обеспечения синхронизации сигналов манчестерский код не используется. Применяется метод кодирования 4В/5В, хорошо себя зарекомендовавший в технологии FDDI. В соответствии с этим методом каждые 4 бита передаваемых данных представляются 5 битами, т. е. из 32 комбинаций 5-битных символов для кодирования исходных 4-битных символов используются только 16 комбинаций, а из оставшихся 16 комбинаций выбираются несколько кодов, которые используются как служебные. Один из служебных кодов постоянно передается в течение пауз между передачей кадров. Если он в линии связи отсутствует, то это свидетельствует об отказе физической связи;

  • кодирование и синхронизация сигналов осуществляются с помощью биполярного кода NRZI;

  • технология Fast Ethernet рассчитана на использование концентраторов-повторителей для образования связей в сети (то же самое имеет место для всех некоаксиальных вариантов Ethernet).

Особенности технологии 100VG-AnyLAN заключается в следующем:

  • используется другой метод доступа к передающей среде – Demand Priority, обеспечивающий более эффективное распределение пропускной способности сети между запросами пользователей и поддерживающий приоритетный доступ для синхронного режима работы. В качестве арбитра доступа используется концентратор, который циклически выполняет опрос рабочих станций. Станция, желая передать свой кадр, посылает специальный сигнал концентратору, запрашивает передачу кадра и указывает его приоритет. Имеются два уровня приоритетов – низкий (для обычных данных) и высокий (для данных, чувствительных к временным задержкам, например мультимедиа). Приоритеты запросов имеют две составляющие – статическую и динамическую, поэтому станция с низким уровнем приоритета, долго не имеющая доступа к сети, получает высокий приоритет;

  • передача кадров осуществляется только станции назначения, а не всем станциям сети;

  • сохранены форматы кадров Ethernet и Token Ring, что облегчает межсетевое взаимодействие через мосты и маршрутизаторы;

  • поддерживаются несколько спецификаций физического уровня, предусматривающих использование четырех и двух неэкранированных витых пар, двух экранированных витых пар и двух оптоволоконных кабелей. Если используются 4 пары неэкранированного кабеля, по каждой паре одновременно передаются данные со скоростью 25 Мбит/с, что в сумме дает 100 Мбит/с. Коллизии при передаче информации отсутствуют. Для кодирования данных применяется код 5В/6В, идея использования которого аналогична коду 4В/5В.

Технология 100VG-AnyLAN не нашла такого широкого распространения, как Fast Ethernet. Это объясняется узостью технических возможностей поддержки разных типов трафика, а также появлением высокоскоростной технологии Gigabit Ethernet.

Технология Gigabit Ethernet. Появление этой технологии представляет собой новую ступень в иерархии сетей семейства Ethernet, обеспечивающую скорость передачи в 1000 Мбит/с. Стандарт по этой технологии принят в 1998г., в нем максимально сохранены идеи классической технологии Ethernet.

По поводу технологии Gigabit Ethernet следует отметить следующее:

  • на уровне протокола не поддерживаются (так же, как и у его предшественников): качество обслуживания, избыточные связи, тестирование работоспособности узлов и оборудования. Что касается качества обслуживания, то считается, что высокая скорость передачи данных по магистрали и возможность назначения пакетам приоритетов в коммутаторах вполне достаточны для обеспечения качества транспортного обслуживания пользователей сети. Поддержка избыточных связей и тестирование оборудования осуществляются протоколами более высоких уровней;

  • сохраняются все форматы кадров Ethernet;

  • имеется возможность работы в полудуплексном и полнодуплексном режимах. Первый из них поддерживает метод доступа CSMA/CD, а второй – работу с коммутаторами;

  • поддерживаются все основные виды кабелей, как и в предшествующих технологиях этого семейства: волоконно-оптический, витая пара, коаксиал;

  • минимальный размер кадра увеличен с 64 до 512 байт, максимальный диаметр сети тот же – 200 м. Можно передавать несколько кадров подряд, не освобождая среду.

Технология Gigabit Ethernet позволяет строить крупные локальные сети, в которых серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль 1000 Мбит/с объединяет их, обеспечивая запас пропускной способности.

До сих пор рассматривались протоколы, работающие на первых трех уровнях семиуровневой эталонной модели ВОС и реализующие соответствующие методы логической передачи данных и доступа к передающей среде. В соответствии с этими протоколами передаются пакеты между рабочими станциями, но не решаются вопросы, связанные с сетевыми файловыми системами и переадресацией файлов. Эти протоколы не включают никаких средств обеспечения правильной последовательности приема переданных данных и средств идентификации прикладных программ, нуждающихся в обмене данными.

В отличие от протоколов нижнего уровня протоколы верхнего уровня (называемые также протоколами среднего уровня, так как они реализуются на 4-м и 5-м уровнях модели ВОС) служат для обмена данными. Они предоставляют программам интерфейс для передачи данных методом дейтаграмм, когда пакеты адресуются и передаются без подтверждения получения, и методом сеансов связи, когда устанавливается логическая связь между взаимодействующими станциями (источником и адресатом) и доставка сообщений подтверждается.

Протоколы верхнего уровня подробно рассматриваются в следующей главе. Здесь лишь коротко отметим протокол IPX/SPX, получивший широкое применение в локальных сетях особенно в связи с усложнением их топологии (вопросы маршрутизации перестали быть тривиальными) и расширением предоставляемых услуг. IPX/SPX – сетевой протокол NetWare, причем IPX (Internetwork Packet Exchange) – протокол межсетевого обмена пакетами, а SPX (Sequenced Packet Exchange) – протокол последовательного обмена пакетами.

Протокол IPX/SPX. Этот протокол является набором протоколов IPX и SPX. Фирма Nowell в сетевой операционной системе NetWare применяет протокол IPX для обмена дейтаграммами и протокол SPX для обмена в сеансах связи.

Протокол IPX/SPX относится к программно-реализованным протоколам. Он не работает с аппаратными прерываниями, используя функции драйверов операционных систем. Пара протоколов IPX/SPX имеет фиксированную длину заголовка, что приводит к полной совместимости разных реализаций этих протоколов.

Протокол IPX применяется маршрутизаторами в сетевой операционной системе (СОС) NetWare. Он соответствует сетевому уровню модели ВОС и выполняет функции адресации, маршрутизации и переадресации в процессе передачи пакетов данных. Несмотря на отсутствие гарантий доставки сообщений (адресат не передает отправителю подтверждения о получении сообщения) в 95 % случаев не требуется повторной передачи. На уровне IPX выполняются служебные запросы к файловым серверам. и каждый такой запрос требует ответа со стороны сервера. Этим и определяется надежность работы методом дейтаграмм, так как маршрутизаторы воспринимают реакцию сервера на запрос как ответ на правильно переданный пакет.

Протокол SPX работает на транспортном уровне модели ВОС, но имеет и функции, свойственные протоколам сеансового уровня. Он осуществляет управление процессами установки логической связи, обмена и окончания связи между любыми двумя узлами (рабочими станциями) ЛКС. После установления логической связи пакеты могут циркулировать в обоих направлениях с гарантией того, что они передаются без ошибок. Протокол SPX гарантирует очередность приема пакетов согласно очередности отправления.