Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по молекулярке.doc
Скачиваний:
32
Добавлен:
03.09.2019
Размер:
3.05 Mб
Скачать

15. Работа в термодинамике. Вычисление работы в изопроцессах иг.

Элементарная работа термодинамической системы над внешней средой может быть вычислена так:

  • ,

где  — нормаль элементарной (бесконечно малой) площадки, P — давление и dV — бесконечно малое приращение объёма.

Работа в термодинамическом процессе , таким образом, выражается так:

  • .

Величина работы зависит от пути, по которому термодинамическая система переходит из состояния 1 в состояние 2, и не является функцией состояния системы. Такие величины называют функциями процесса.

Работа, совершенная идеальным газом в изотермическом процессе, равна , где  — число частиц газа,  — температура, и  — объём газа в начале и конце процесса,  — постоянная Больцмана .

В твёрдом теле и большинстве жидкостей изотермические процессы очень мало изменяют объём тела, если только не происходит фазовый переход.

Первый закон термодинамики для изотермического процесса записывается в виде:

   

  1. Теплота. Теплоёмкость. Общее выражение для теплоёмкости. Теплоёмкость иг в изопроцессах.

ТЕПЛОТА, кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплоёмкость тела (обозначается C) — физическая величина, определяющая отношение бесконечно малого количества теплоты ΔQ, полученного телом, к соответствующему приращению его температуры ΔT:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельной теплоемкостью называется количество теплоты, которое необходимо для нагревания единичного количества вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоемкость, различают массовую, объемную и мольную теплоемкость.

Массовая теплоемкость (С) – это количество теплоты, которую необходимо подвести к единице массы тела (обычно 1 кг), чтобы нагреть его на 1 С, измеряется в джоулях на килограмм на кельвин (Дж/кг К).

Объемная теплоемкость (С′) – это количество теплоты, которую необходимо подвести к 1 м3 вещества, чтобы нагреть его на 1 С, измеряется в джоулях на кубический метр на кельвин (Дж/м3·К).

Мольная теплоемкость (Сμ) – это количество теплоты, которую необходимо подвести к 1 молю вещества, чтобы нагреть его на 1 С, измеряется в джоулях на моль на кельвин (Дж/моль·К).

Если же говорить про теплоёмкость произвольной системы, то ее уместно формулировать в терминах термодинамических потенциалов — теплоёмкость есть отношение малого приращения количества теплоты Q к малому изменению температуры T:

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа). Если речь идёт не о каком-либо теле, а о некотором веществе как таковом, то различают удельную теплоёмкость — теплоёмкость единицы массы этого вещества и молярную — теплоёмкость одного моля его.

Для примера, в молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объеме равна:

R = 8.31 Дж/(моль К) — универсальная газовая постоянная.

А при постоянном давлении

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоемкость жидкой воды при нормальных условиях — 4200 Дж/(кг К). Льда — 2100 Дж/(кг К)

Теплоёмкость идеального газа

Теплоемкость идеального газа - это отношение тепла, сообщенного газу, к изменению температуры δТ, которое при этом произошло.

Теплоемкость идеального газа в изопроцессах

Адиабатический

В адиабатическом процессе теплообмена с окружающей средой не происходит, т.е. δQ=0. Следовательно, теплоемкость идеального газа в адиабатическом процессе также равна нулю: Садиаб=0.

Изотермический

В изотермическом процессе постоянна температура, т.е. dT = 0. Следовательно, теплоемкость идеального газа стремится к бесконечности:

Изохорический

В изохорическом процессе постоянен объем, т.е. δV = 0. Элементарная работа газа равна произведению изменения объема на давление, при котором происходит изменение (δA = δVP). Первое Начало Термодинамики для изохорического процесса имеет вид:

dU = δQ = CVΔT

А для идеального газа Таким образом, где i - число степеней свободы частиц газа.

Изобарический

В изобарическом процессе (P = const):

δQ = dU + PdV = νCVΔT + νRΔT = ν(CV + R)ΔT = νCPΔT

CP=δQ/νΔT=CV+R=(1+i/2)*R