Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_teplotekhnika.doc
Скачиваний:
32
Добавлен:
08.08.2019
Размер:
1.12 Mб
Скачать

30 Теплопроводность в плоских многослойных стенках. Многослойная плоская стенка

Р

t

1

q=Const

tc1

x

tc2

tc3

tc1

2

3

1 23

ассмотрим для тех же условий многослойную плоскую стенку с толщиной слоев 1, 2,…, n с соответствующими коэффициентами теплопроводности 1, 2,…, n (рисунок 9.4). Здесь слои плотно прилегают друг к другу.

В этом случае плотность теплового потока определяется по формуле:

Рисунок 9.4 - Распределение температур по толщине многослойной плоской стенки

,

где n - число слоев многослойной стенки;

tc1 и tc(n+1) - температуры на внешних границах многослойной стенки;

- полное термическое сопротивление многослойной плоской стенки.

Плотность теплового потока, проходящего через все слои, в стационарном режиме одинакова. А так как коэффициент теплопроводности  различен, то для плоской многослойной стенки распределение температур - ломанная линия.

Рассчитав тепловой поток через многослойную стенку, можно найти температуру на границе любого слоя. Для к-го слоя можно записать:

,

31 Физический смысл коэффициента теплопроводности. Уравнение Фурье.

Теория теплопроводности рассматривает тело как непрерывную среду. Согласно основному закону теплопроводности - закону Фурье - вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален вектору градиента температуры:

,где - коэффициент теплопроводности, Вт/(мК). Он характеризует способность вещества, из которого состоит рассматриваемое тело, проводить теплоту.

Знак «-» указывает на противоположное направление вектора теплового потока и вектора градиента температуры. Вектор плотности теплового потока q всегда направлен в сторону наибольшего уменьшения температуры.

скалярная величина вектора плотности теплового потока:

,

Из формулы следует, что коэффициент теплопроводности определяет плотность теплового потока при градиенте температуры 1 К/м.

к оэффициент теплопроводности является физическим параметром и зависит от химической природы вещества и его физического состояния (плотности, влажности, давления, температуры). Диапазоны изменения для различных материалов приведены на рисунке 9.2.

Теплопроводность при стационарном режиме

32 Теплопроводность в цилиндрической однослойной стенке. Однородная цилиндрическая стенка

Задача о распространении тепла в цилиндрической стенке также одномерная, если ее рассматривать в цилиндрических координатах. температура изменяется только вдоль радиуса r, а по длине и по ее периметру остается неизменной.

В соответствии с законом Фурье, тепловой поток через однородную цилиндрическую стенку длиной l определяется по формуле: ,

Т

d1

d2

tC1

tC2

t

епловой поток Q через цилиндрическую стенку можно отнести к единице длины l:

,

г

Рисунок 9.5 - Изменение температуры по толщине однородной цилиндрической стенки

де ql - линейная плотность теплового потока, Вт/м;

- линейное термическое сопротивление теплопроводности трубы.

При значениях d2/d1 близких к единице расчеты Rl должны производиться с высокой точностью, т.к. при округлении d2/d до одного знака после запятой погрешность вычисления логарифма будет больше 10%. С точностью до 4% при d2/d1 < 2 в практических расчетах рекомендуется пользоваться формулой для плоской стенки:

,

где dcp=0,5(d1+d2) - средний диаметр трубы.

В толще однородной цилиндрической стенки температура изменяется по логарифмическому закону.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]