Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_teplotekhnika.doc
Скачиваний:
32
Добавлен:
08.08.2019
Размер:
1.12 Mб
Скачать

28. Способы переноса теплоты.

Теплопроводность

В чистом виде теплопроводность наблюдается только в сплошных твердых телах. Теплота передается непосредственно через материал или от одного материала другому при их соприкосновении Высокой теплопроводностью обладают плотные материалы — металл, железобетон, мрамор. Воздух имеет низкую теплопроводность. Поэтому через материалы с большим количеством замкнутых пор, заполненных воздухом, плохо передается теплота и они могут использоваться как теплоизоляционные (семищелевой кирпич, пенобетон, вспененный полиуретан, пенопласт).

Рис. 2.1.    Передача   теплоты через кирпичную    стену    теплопроводностью: 1 — кирпичная  кладка;   2 — штукатурка

Конвекция

Конвекция характерна для жидких и газообразных сред, где перенос теплоты происходит в результате движения молекул. Конвективный теплообмен наблюдается у поверхности стен при наличии температурного перепада между конструкцией и соприкасающимся с ней воздухом. В окнах жилых домов конвективный теплообмен происходит между поверхностями остекления, обращенными внутрь воздушной прослойки. Нагреваясь от внутреннего стекла, теплый воздух поднимается вверх. При соприкосновении с холодным наружным стеклом воздух отдает свое тепло и, охлаждаясь, опускается вниз (рис. 2.2).

Рис. 2.2. Схема передачи теплоты конвекцией в межстекольном пространстве оконного блока со спаренным остеклением

Излучение происходит в газообразной среде путем передачи теплоты с поверхности тела через пространство (в виде энергии электромагнитных волн). Благодаря лучистому теплообмену поверхность Земли обогревается Солнцем, находящимся от нее на расстоянии многих световых лет. Аналогичным образом осуществляется передача теплоты излучением между двумя поверхностями, расположенными в стене и разделенными воздушной прослойкой. Нагретая поверхность радиатора излучает теплоту и обогревает помещение. Чем   выше  температура поверхности  отопительного прибора, тем сильнее обогревается помещение (рис. 2.3).

Рис. 2.3. Схема теплообмена излучением    между отопительным прибором и человеком

29. Теплопроводность в плоских однослойных стенках.

t

Р

q=Const

tc1

tc2

x

Рисунок 9.3 - Изменение температур по толщине однородной плоской стенки

ассмотрим однородную плоскую стенку толщиной , на поверхностях которой поддерживаются температуры tс1 и tс2, причем tс1>tс2 (рис.2.2). температура изменяется только по толщине стенки - по одной координате х, коэффициент теплопроводности . Теплового потока в этом случае, в соответствии с законом Фурье, определяется по формуле:

,

или

,

где , причем tс1>tс2;

- внутреннее термическое сопротивление теплопроводности стенки, (м2К)/Вт.

Распределение температур в плоской однородной стенке - линейное.

В большинстве практических задач приближенно предполагается, что коэффициент теплопроводности не зависит от температуры и одинаков по всей толщине стенки. значение находят в справочниках при средней температуре .

Тепловой поток (мощность теплового потока) определяется по формуле:

,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]