Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen12.doc
Скачиваний:
63
Добавлен:
20.04.2019
Размер:
1.56 Mб
Скачать

38.Закон Ома для неоднородного участка электрической цепи.

При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными. На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.

Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, ,где q — положительный заряд, который перемещается между любыми двумя точками цепи;

— разность потенциалов точек в начале и конце рассматриваемого участка;

.Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

Закон Ома для неоднородного участка цепи имеет вид:

где R — общее сопротивление неоднородного участка.

39.Природа электрического тока в металлах.Классическая теория электропроводности металлов.Экспериментальные доказательства электронной природы тока в металлах.

Природа электрического тока в металлах. Все металлы в твердом и жидком состоянии являются проводниками электрического тока. Специально поставленные опыты показали, что при прохождении электрического тока масса металлических проводников остается постоянной, не изменяется и их химический состав. На этом основании можно было предположить, что в создании электрического тока в металлах участвуют только электроны. Предположение об электронной природе электрического тока в металлах подтверждено опытами советских физиков Л. И. Мандельштама и Н. Д. Папалекси и американских физиков Т. Стюарта и Р. Толмена. В этих опытах было обнаружено, что при резкой остановке быстро вращающейея катушки в проводе катушки возникает электрический ток, создаваемый отрицательно заряженными частицами — электронами.

При отсутствии электрического поля свободные электроны перемещаются в кристалле металла хаотически. Под действием электрического поля свободные электроны, кроме хаотического движения, приобретают упорядоченное движение в одном направлении, и в проводнике возникает электрический ток. Свободные электроны сталкиваются с ионами кристаллической решетки, отдавая им при каждом столкновении кинетическую энергию, приобретенную при свободном пробеге под действием электрического поля. В результате упорядоченное движение электронов в металле можно рассматривать как равномерное движение с некоторой постоянной скоростью.

Так как кинетическая энергия электронов, приобретаемая под действием электрического поля, передается при столкновении ионами кристаллической решетки, то при прохождении постоянного тока проводник нагревается.

Основы классической электронной теории электропроводности металлов:

Друде разработал классическую теорию электропроводности металлов, которая затем была усовершенствована Лоренцем. Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь .Правда в отличие от молекул газа , пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле Для комнатной температуры вычисление по этой формуле приводит к следующему значению: .При включении поля на хаотическое тепловое движение, происходящее, со скоростью накладывается упорядоченное движение электронов с некоторой средней скоростью . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью :

Металлы обладают электронной проводимостью. Экспериментальные доказательства:

Опыт К. Рикке: пропускал ток в сотни ампер в течение длительного времени. Ожидал: в алюминии появится медь. Результат: отрицательный, т. е. ток не является направленным движением ионов.

Опыт Стюарта-Толмена:

1913 r. — Мандельштам — Папалекси предложили,

1916 г. — Стюарт — Толмен осуществили экспериментально.

Длина l провода=500 м (в катушке). Катушка вращалась с v =500 м/с: при резком торможении свободные частицы двигались по инерции. По отклонению стрелки гальванометра определяли удельный заряд, по направлению отклонения - знак заряда.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]