Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen12.doc
Скачиваний:
63
Добавлен:
20.04.2019
Размер:
1.56 Mб
Скачать

Скорость точки.

Положение точки определяется пространственными параметрами: радиус-вектором, декартовыми координатами, дуговой координатой и др. Скорость точки является пространственно - временным параметром.

Скоростью точки называется кинематический параметр, характеризующий быстроту изменения положения точки в системе отсчета с течением времени.

Ра́диус-ве́ктор (обычно обозначается   или просто   ) — вектор, задающий положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началомкоординат.

Для произвольной точки в пространстве, радиус-вектор — это вектор, идущий из начала координат в эту точку.

Длина радиус-вектора, или его модуль, определяет расстояние, на котором точка находится от начала координат, а стрелка указывает направление на эту точку пространства.

На плоскости углом радиус-вектора называется угол, на который радиус-вектор повёрнут относительно оси абсцисс в направлении против часовой стрелки.

2)Ускорение точки. Нормальное и тангенциальное ускорение. Проекции ускорения на координатные оси.

Ускоре́ние (обычно обозначается  , в теоретической механике  ) — производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Например, вблизи Земли падающее на Землю тело, в случае, когда можно пренебречь сопротивлением воздуха, увеличивает свою скорость примерно на 9,8 м/с каждую секунду, то есть, его ускорение равно 9,8 м/с².

Единицей ускорения служит метр в секунду за секунду (m/s2м/с2), существует также внесистемная единица Гал (Gal), применяемая в гравиметрии и равная 1 см/с2.

Производная ускорения по времени, т.е. величина, характеризующая скорость изменения ускорения, называется рывок.

Способы определения ускорения.

Ускорение точки при векторном способе задания движения.

Определение ускорения при координатном способе задания движения. Нахождение ускорения при естественном способе задания движения.

Тангенциа́льное ускоре́ние  — компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости. Обозначается обычно   или   ( ,  итд в соответствии с тем, какая буква выбрана для обозначения ускорения вообще в данном тексте).

Иногда[1] под тангенциальным ускорением понимают проекцию вектора тангенциального ускорения — как он определен выше — на единичный вектор касательной к траектории, что совпадает с проекцией (полного) вектора ускорения на единичный вектор касательной то есть соответствующий коэффициент разложения по сопутствующему базису. В этом случае используется не векторное обозначение, а «скалярное» — как обычно для проекции или координаты вектора —  .

Формула

Величину тангенциального ускорения - в смысле проекции вектора ускорения на единичный касательный вектор траектории - можно выразить так:

где   - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

Если использовать для единичного касательного вектора обозначение  , то можно записать тангенциальное ускорение в векторном виде:

Нормальное ускорение, составляющая ускорения точки при криволинейном движении, направленная по главной нормали к траектории в сторону центра кривизны; Нормальное ускорение называется также центростремительным ускорением. Численно Нормальное ускорениеравно v2/r, где v — скорость точки, r — радиус кривизны траектории. При движении по окружности Нормальное ускорение может вычисляться по формуле rw2, где r — радиус окружности, w— угловая скорость вращения этого радиуса. В случае прямолинейного движения Нормальное ускорение равно нулю. 

определение скорости точки при координатном способе задания движения

Вектор скорости точки  , учитывая, что  ,  найдем:

.

Таким образом, проекции скорости точки на координатные оси равны первым производным от соответствующих координат точки по времени.

Зная проекции скорости, найдем ее модуль и направление (т.е. углы  , которые вектор   образует с координатными осями) по формулам

;

,   .

Итак, численная величина скорости точки в данный момент времени равна первой производной от расстояния (криволинейной координаты) точки по времени.

Направлен вектор скорости по касательной к траектории, кото­рая нам наперед известна.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]