Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_mate.docx
Скачиваний:
8
Добавлен:
16.04.2019
Размер:
393.86 Кб
Скачать

11 Нормальное уравнение прямой. Расстояние от точки до прямой

Пусть на плоскости хОу дана прямая. Проведем через начало координат перпендикуляр к данной прямой и назовем его нормалью. Обозначим через Р точку пересечения нормали с данной прямой и установим положительное направление нормали от точки О к точке Р.

Если - полярный угол нормали, р - длина отрезка (рис.), то уравнение данной прямой может быть записано в виде

уравнение этого вида называется нормальным.

Пусть дана какая-нибудь прямая и произвольная точка ; обозначим через d расстояние от точки М* до данной прямой. Отклонением точки от прямой называется число +d, если данная точка и начало координат лежат по разные стороны от данной прямой, и -d, если данная точка и начало координат расположены по одну сторону от данной прямой. (Для точек, лежащих на самой прямой, =0). Если даны координаты , точки и нормальное уравнение прямой , то отклонение точки от этой прямой может быть вычислено по формуле

.

Таким образом, чтобы найти отклонение какой-нибудь точки от данной прямой, нужно в левую часть нормального уравнения этой прямой вместо текущих координат подставить координаты точки . Полученное число будет равно искомому отклонению.

Чтобы найти расстояние d от точки до прямой, достаточно вычислить отклонение и взять его модуль: .

Если дано общее уравнение прямой , то, чтобы привести его к нормальному виду, нужно все члены этого уравнения умножить на нормирующий множитель , определяемый формулой

.

Знак нормирующего множителя выбирается противоположным знаку свободного члена нормируемого уравнения.

12 Вычисление угла между прямыми

Пусть прямые  и  заданы общими уравнениями

 и

Обозначим через φ величину угла между прямыми  и (напомним, что угол между прямыми измеряется от 0° до 90°), а через ψ – угол между нормальными векторами  и  этих прямых. Если ψ ≤ 90°, то φ = ψ. Если же ψ > 90°, то φ = 180° – ψ. В обоих случаях верно равенство  Из теоремы 11.10 следует, что

и, следовательно,

Записав через координаты, получим

Если прямые  и  заданы уравнениями с угловыми коэффициентами  и

 и

то нормальные векторы этих прямых могут быть    и выражение для косинуса угла между этими прямыми будет иметь вид:

Из последнего выражения следует, что если  то cos φ = 1 и φ = 0, то есть прямые параллельны или совпадают. С другой стороны, если прямые параллельны, то φ = 0 или cos φ = 1. Подставляя в правую часть вместо cos φ его значение 1, умножая обе части на знаменатель и возводя в квадрат, получим

Отсюда получаем

Если  то cos φ = 0 и  то есть прямые перпендикулярны. Обратно, если прямые перпендикулярны, то   или cos φ = 0. Отсюда следует с необходимостью

Следовательно, необходимые и достаточные условия параллельности и перпендикулярности двух прямых, заданных уравнениями с угловыми коэффициентами  и  формулируются следующим образом.

Т еорема 11.13. 

Для того чтобы прямые  и  были

  • параллельны, необходимо и достаточно, чтобы  

  • перпендикулярны, необходимо и достаточно, чтобы

Пользуясь знанием координат направляющего и нормального векторов прямых, заданных общими уравнениями, можно сформулировать условия параллельности и перпендикулярности прямых через коэффициенты общих уравнений этих прямых.

Т еорема 11.14. 

Для того чтобы прямые  и  были

  • параллельны, необходимо и достаточно, чтобы соответствующие коэффициенты их уравнений при одноименных неизвестных были пропорциональны, то есть

  • перпендикулярны, необходимо и достаточно, чтобы выполнялось равенство

Доказательство

  • Пусть    – направляющие векторы прямых. Тогда необходимым и достаточным условием параллельности прямых является условие коллинеарности векторов  и  то есть

  • Так как при этом  и  то k ≠ 0. Поэтому, если один из коэффициентов равен нулю, например  то с необходимостью  При этом     С учетом этого можно записать

  • откуда формально следует

  • Отметим при этом, что если одновременно  то оба уравнения задают одну и ту же прямую и в этом случае прямые совпадают. Если же  то прямые параллельны.

  • Неоходимым и достаточным условием перпендикулярности прямых является условие ортогональности их направляющих векторов  и  для чего, в свою очередь, необходимо и достаточно равенство нулю их скалярного произведения, то есть

  • что и требовалось доказать.

Пусть задана прямая l общим уравнением Ax + By + C = 0 и некоторая точка  лежащая вне прямой. Поставим задачу найти расстояние  от этой точки до прямой l. Опустим перпендикуляр  из точки  на прямую l и обозначим    радиус-векторы точек  и  соответственно (см. рис. 11.6.1). Очевидно,

1

Рисунок 11.6.1.

Пусть  – некоторая точка прямой l, отличная от точки  Тогда уравнение прямой l можно записать в нормальной векторной форме:

где  а  – вектор нормали к прямой l. Или, в векторной форме,

Очевидно, справедливо векторное равенство  причем   поэтому   Умножив обе части равенства скалярно на вектор , получим

Так как точка   лежит на прямой l, то   и, следовательно,  Подставляя в исходное равенство, найдем

Отсюда

Переходя к координатной форме записи и учитывая, что    имеем

Таким образом верна теорема

Т еорема 11.15. 

Растояние от точки до прямой l, заданной уравнением Ax + By + C = 0 вычисляется по формуле

14.Плоскость в пространстве: общее уравнение; уравнение в отрезках; уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору; уравнение плоскости, проходящей через три данные точки.

Плоскость в пространстве.

Получим сначала уравнение плоскости, проходящей через точку М0(х0 ,у0 ,z0) перпендикулярно вектору n = {A,B,C},называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z) вектор М0М = {x - x0 , y - y0 , z - z0) ортогонален вектору n, следовательно, их скалярное произведение равно нулю:

A(x - x0) + B(y - y0) + C(z - z0) = 0. (8.1)

Получено уравнение, которому удовлетворяет любая точка заданной плоскости – уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.

После приведения подобных можно записать уравнение (8.1) в виде:

Ax + By + Cz + D = 0, (8.2)

где D = -Ax0 - By0 - Cz0. Это линейное уравнение относительно трех переменных называют общим уравнением плоскости.

Неполные уравнения плоскости.

Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.

Рассмотрим возможные виды неполных уравнений:

1) D = 0 – плоскость Ax + By + Cz = 0 проходит через начало координат.

2) А = 0 – n = {0,B,C}Ox, следовательно, плоскость By + Cz + D = 0 параллельна оси Ох.

3) В = 0 – плоскость Ax + Cz +D = 0 параллельна оси Оу.

4) С = 0 – плоскость Ax + By + D = 0 параллельна оси Оz.

5) А = В = 0 – плоскость Cz + D = 0 параллельна координатной плоскости Оху (так как она параллельна осям Ох и Оу).

6) А = С = 0 – плоскость Ву + D = 0 параллельна координатной плоскости Охz.

7) B = C = 0 – плоскость Ax + D = 0 параллельна координатной плоскости Оуz.

8) А = D = 0 – плоскость By + Cz = 0 проходит через ось Ох.

9) B = D = 0 – плоскость Ах + Сz = 0 проходит через ось Оу.

10) C = D = 0 - плоскость Ax + By = 0 проходит через ось Oz.

11) A = B = D = 0 – уравнение Сz = 0 задает координатную плоскость Оху.

12) A = C = D = 0 – получаем Ву = 0 – уравнение координатной плоскости Охz.

13) B = C = D = 0 – плоскость Ах = 0 является координатной плоскостью Оуz.

Если же общее уравнение плоскости является полным ( то есть ни один из коэффициентов не равен нулю), его можно привести к виду:

Угол между плоскостями. Условия параллельности и

перпендикулярности плоскостей.

Если две плоскости (α1 и α2) заданы общими уравнениями вида:

A1x+B1y+C1z+D1=0 и A2x+B2y+C2z+D2=0,

то очевидно, что угол между ними равен углу между их нормалями, то есть между векторами n1={A1,B1,C1) и n2={A2,B2,C2). Из формулы (5.6) получаем, что косинус угла между плоскостями α1 и α2 равен

(8.4)

Условие параллельности плоскостей заключается в параллельности нормалей:

а условие перпендикулярности плоскостей – в перпендикулярности нормалей или равенстве нулю их скалярного произведения:

A1A2 + B1B2 + C1C2 = 0.

Выведем еще несколько уравнений плоскости. Пусть плоскость проходит через точки М1(х1, у1, z1), M2(x2, y2, z2) и M3(x3, y3, z3), не лежащие на одной прямой. Тогда векторы М1М2={x2 - x1, y2 - y1, z2 - z1}, М1М3={x3 - x1, y3 - y1, z3 - z1} и М1М={x - x1, y - y1, z - z1}, где М(x, y, z) – произвольная точка плоскости, компланарны. Следовательно, их смешанное произведение равно нулю. Используя координатную запись смешанного произведения, получаем:

Это уравнение, которому удовлетворяют координаты х, у, z любой точки, лежащей на искомой плоскости, является уравнением плоскости, проходящей через три данные точки.

Способом, аналогичным изложенному в лекции 7, можно получить нормальное уравнение плоскости:

(8.8)

где р – длина перпендикуляра ОР, опущенного из начала координат на плоскость, а cosα, cosβ, cosγ – направляющие косинусы нормали к этой плоскости. При этом расстояние от любой точки А пространства до данной плоскости определяется по формуле:

, (8.9)

где x0,y0,z0 – координаты рассматриваемой точки А. Подмодульное выражение в формуле (8.9) называется отклонением точки А от плоскости и принимает положительные значения, если А и начало координат лежат по разные стороны от плоскости, и отрицательные, если эти две точки лежат по одну сторону от плоскости. Нормальное уравнение получается из общего уравнения плоскости в результате деления его на нормирующий множитель знак которого противоположен знаку D.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]