Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Himia_Otvety_na_voprosy.doc
Скачиваний:
68
Добавлен:
09.12.2018
Размер:
837.63 Кб
Скачать

4.5.1. Самопроизвольные процессы

Самопроизвольным называется процесс, который осуществляется без затраты работы (энергии) извне. Так, самопроизвольно камни скатываются с горы, теплота передается от более нагретого тела к менее нагретому, а химические реакции достигают состояния равновесия. В обратном направлении самопроизвольный процесс идти не может.

По-видимому, протекание рассмотренных и других процессов определяется какой-то причиной или, как принято говорить, движущей силой. Одной из составляющих (причем наиболее значимой) движущей силы всех (в том числе и химических) самопроизвольно идущих процессов является тенденция к понижению энергии системы. При падении камень теряет свою потенциальную энергию, которая в итоге (в момент его удара о землю) превращается в тепловую энергию окружающей среды. Экзотермические реакции, при протекании которых выделяется теплота, сопровождаются уменьшением химической потенциальной энергии. Экзотермические реакции, как правило, идут самопроизвольно.

Однако тенденция к достижению минимальной энергии не является единственным фактором, определяющим направление самопроизвольного процесса. На это указывает возможность самопроизвольного протекания не только экзотермических, но и эндотермических реакций. Так, например, самопроизвольно идут следующие эндотермические процессы:

- растворение хлорида калия в воде:

KCl(т) KCl(р) ; H(298 К) = 19 кДж/моль;

- плавление льда при комнатной температуре:

H2O(т) = H2O(ж) ; H(298 K) = 6 кДж/моль;

- испарение воды:

H2O(ж) = H2O(г) ; H(298 K) = 44 кДж/моль

и другие. В то же время в стандартных условиях невозможно осуществить экзотермический процесс синтеза, например, н-гептана C7H16, протекающего по уравнению:

7C(графит) + 8H2(г) = C7H16(ж); H(298 K) = -224,39 кДж.

Таким образом, тепловой эффект реакции не является критерием направления течения процесса. Другими словами, первый закон термодинамики не позволяет судить о способности химических процессов к самопроизвольному протеканию.

4.5.2 Энтропия

В природе протекание большинства процессов, в том числе и химических, сопровождается не только энергетическими эффектами, но и изменением в упорядочении расположения частиц относительно друг друга. Рассмотренные выше примеры превращений имеют одно общее свойство: в каждом случае состояние продуктов характеризуется большей хаотичностью, или неупорядоченностью, чем состояние реагентов. Растворение хлорида калия сопровождается нарушением регулярности в расположении частиц в узлах кристаллической решетки - возникает беспорядочное распределение ионов в растворе. Молекулы воды, образующие кристалл льда, прочно удерживаются в его кристаллической решетке. При плавлении льда молекулы H2O начинают свободно перемещаться относительно друг друга. Высокоупорядоченная кристаллическая структура заменяется неупорядоченной структурой жидкости. В процессе испарения структура жидкости, представленная ассоциатами из ее молекул, заменяется отдельными молекулами, движущимися независимо (в газовой фазе).

Таким образом, частицам (молекулам, атомам, ионам и др.) присуще стремление к беспорядочному движению, поэтому система стремится перейти из более упорядоченного состояния в менее упорядоченное. Количественной мерой неупорядоченности (беспорядка) системы является термодинамическая функция состояния системы - энтропия (S, Дж/(моль·K)). Чем в большей мере выражен беспорядок в системе, тем больше ее энтропия. Следовательно, еще одной составляющей движущей силы самопроизвольно протекающих процессов является тенденция к увеличению энтропии системы.