Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМП_КСЕ_ВПО.doc
Скачиваний:
138
Добавлен:
18.02.2016
Размер:
1.12 Mб
Скачать

4.2. Закон сохранения энергии

Энергия – общая количественная мера движения и взаимодействия всех видов материи. Понятие «энергия» связывает воедино все явле­ния природы.

В соответствии с различными формами движения материи рассматривают и разные формы энергии: тепловую, механическую, внутреннюю, химическую, электромагнитную, ядерную и др. Механическая энергия подразделяется на кинетическую и потенциальную.

Внутренняя энергия равна сумме кинетических энергий хаотического движения молекул относительно центра масс и потенциальных энергий взаимодействия молекул друг с другом. Химическая энергия складывается из кинетической энергии движения электронов и электрической энергии взаимодействия электронов друг с другом и с атомными ядрами молекул химических веществ. Энергия химических связей для двухатомных молекул – это энергия, требуемая для удаления атомов на бесконечно большое расстояние друг от друга.

В атомной физике используется понятие энергии ионизации. Она равна работе, затрачиваемой на удаление одного внешнего электрона из атома, или ионизационному потенциалу.

В микрофизике широко используется понятие энергии связи. Энергия связи системы каких-либо частиц (например, атома как системы, состоящей из ядра и электронов) равна работе, которую необходимо затратить, чтобы разделить данную систему на составляющие ее частицы и удалить их друг от друга на расстояние, при котором их взаимо­действием можно пренебречь.

При переходе системы из одного состояния в другое изменение энергии не зависит от того, в результате каких взаимодействий происходит переход, т.е. энергия – функция состояния системы. Закон сохранения энергии является строгим законом природы, справедливым для всех известных взаимодействий. Согласно известной тео­рии Э. Нетер, он связан с однородностью времени, т.е. с тем фактом, что все моменты времени эквивалентны и физические законы не меняются со временем.

Французский физик и математик С. Карно впервые занялся изучением вопроса превращения теплоты в работу паровых машин. Поставив задачу, как наиболее экономно использовать топливо в паровых машинах, он нашел оптимальные условия работы тепловой машины (цикл Карно), при которых можно добиться максимального коэффициента ее полезного действия. Теорема Карно сыграла важную роль в установлении одного из фундаментальных законов природы – второго начала термодинамики – Ю. Р. Майером, Г. Гельмгольцем и Дж. Джоулем.

4.3. Динамические и статистические закономерности в природе

Механическое движение тел подчиняется законам классической механики Ньютона, динамическим законам, устанавливающим, что дви­жение происходит под действием сил. Динамические законы имеют однозначный характер всех связей и зависимостей. Зная начальное состояние механической системы, можно однозначно определить ее последующие состояния. Динамические закономерности не допускают какой-либо неопределенности системы.

Система тепловых термодинамических процессов в отличие от динамической включает большое число отдельных элементов (например, молекул газовой системы), требует статистического рассмотрения, при котором интересуются не движением каждой молекулы, а лишь ее вероятностными характеристиками. Используя теорию вероятностей, можно определить усредненные характеристики всей системы и уста­новить статистические закономерности поведения всей системы.

В классической термодинамике рассматриваются в основном изолированные системы, которые не обмениваются с внешней средой энергией. Именно для таких систем установлен закон возрастания энтро­пии. Этот закон имеет простое статистическое толкование. Энтропия изолированной, т.е. предоставленной самой себе, системы не может убывать. Предоставленная самой себе система будет переходить из менее вероятного состояния в более вероятное. Таким образом, энтропия и вероятность состояний изолированной системы ведут себя аналогично: они могут либо возрастать, либо оставаться неизменными.

В последние годы широкое развитие получили исследования в об­ласти термодинамики неизолированных, так называемых открытых систем, т.е. систем, которые обмениваются энергией и веществом с внешним миром. Открытыми являются биологические системы, в частности клетки живых организмов. Для таких систем энтропия может как возрастать, так и убывать.

В изолированных системах естественные (самопроизвольные) про­цессы идут в направлении от упорядоченных структур к неупорядо­ченным, т.е. от порядка к беспорядку, хаосу. И в этом смысле можно говорить о том, что энтропия есть мера хаоса, беспорядка. Для неизолированных, открытых, систем эволюция, например, живых организмов ведет от менее совершенных форм к более совершенным, от меньшего порядка в природе к большему, и в этих системах энтропия может не увеличиваться, а уменьшаться.

Принцип возрастания энтропии. Понятие энтропии исторически воз­никло при рассмотрении и изучении тепловых процессов и создании термодинамики. К моменту зарождения термодинамики в естествознании господствовала механика Ньютона – механика обратимых про­цессов, которые могут идти как в прямом, так и в обратном направле­нии с так называемым обратимым временем. Например, вращающееся тело проходит при движении одни и те же положения при вращении по часовой стрелке, а затем и против часовой стрелки. Или другой при­мер: в принципе возможны все механические движения, показанные на кинопленке при ее прокручивании – как в прямом, так и в обратном направлении. В термодинамике в этом отношении все обстоит совсем иначе. Так, кажется нереальным появление дров из пепла при прокру­чивании пленки, на которой снят горящий костер.

Важнейшее понятие – энтропию – ввел Р. Ю. Клаузиус. Из термодинамического понятия оно сначала перешло в другие разделы физи­ки – механику, электричество, магнетизм, оптику, а затем в смежные науки – химию, информатику, биологию и сейчас стало одним из важ­нейших понятий современного естествознания наряду с таким, напри­мер, понятием, как энергия.

Энтропия функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению ко­личества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре

Принята следующая иерархия качества энергии в указанном смыс­ле: ядерная, электромагнитная, химическая, механическая и тепловая энергии. При этом каждому виду энергии соответствует свое значение энтропии. Оно имеет минимальное значение для энергии высокого качества и возрастает при превращении всех видов энергии в тепловую и переходе системы в термодинамическое равновесие, при котором энтропия достигает максимальной величины.

В связи с этим значение энтропии («превращения») характеризует меру обесценивания энергии. Там, где происходят процессы измене­ния и преобразования энергии, следует ее тень – энтропия.

При плавлении и испарении происходит изменение энтропии си­стем. Термодинамические основы растворения одних веществ в других также требуют знания энтропии. Возрастание растворимости веществ с повышением температуры, расслоение бензина на поверхности воды также связаны с возрастанием энтропии. Изменение энтропии выталкивает молекулы углеводородов из водного окружения. Изменение энтропии выступает в роли действующей силы, гидрофобной. Вещества, которые выталкиваются ею из воды, называются гидрофобными в отличие от гидрофильных веществ вроде спирта, которые полностью растворяются в воде. Следствия гидрофобных энтропийных сил – это строение белков: веществ, определяющих протекание всех жизненных процессов. В своем высказывании Э. Шредингер выразил значение энтропии для биологических систем: «Живой организм питается отрицательной энтропией». Широкое применение получила энтропия в информатике, в частности для расчетов пропускной способности различных линий связи и систем передачи информации.