Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторные новые МСвП.doc
Скачиваний:
35
Добавлен:
04.06.2015
Размер:
6.99 Mб
Скачать

Работа №5 Металлографические исследования композиционных втсп-проводников на основе фазы Bi-2223 / Ag

1. Цель работы

Целью данной работы является ознакомление с конструкцией композиционных сверхпроводников Bi-2223/Ag на различных стадиях производства; расчёт основных характеристик и свойств ВТСП-проводников.

2. Теоретическое введение

Высокотемпературные сверхпроводники условно разделяют на две группы: ВТСП первого (1G) и ВТСП второго поколения (2G). К первому поколению относятся купраты на основе висмута (Bi-2212 и Bi-2223), таллия, ртути, иттрия (массивная керамика Y-123), недавно открытые некупратные ВТСП на основе арсенида железа FeAs и др. К ВТСП второго поколения относят ленточные проводники на основе фазы Y-123. Кроме этого, существуют также сверхпроводники на основе диборида магния MgB2, по природе сверхпроводимости которых их можно рассматривать как отдельный класс проводников.

2.1. Втсп на основе фазы Bi2Sr2Ca2Cu3Ox (Bi-2223)

Сверхпроводник первого поколения Bi-2223 представляет собой композиционный материал, в котором сверхпроводящие керамические волокна находятся в металлической матрице (преимущественно серебро или его сплавы). По этой причине, процесс механической и термической обработки сопряжен со значительными трудностями. Основной технологией для производства таких материалов является метод "порошок в трубе" (PIT - Powder In Tube).

Суть метода заключается в заполнения металлической трубы порошком сверхпроводящего полуфабриката (прекурсором), герметизации и дальнейших операциях волочения и экструзии до получения провода с круглым сечением. При изготовлении многожильных проводников собираются многожильные заготовки с последующими операциями обработки давления. Затем проводится плоская прокатка (пластическая деформация в цилиндрических валках) для получения проводника ленточной формы. Далее проводники подвергаются соответствующей термической и термомеханической обработки. Термомеханическая обработка состоит из чередующихся циклов высокотемпературной термообработки с промежуточными деформациями при комнатной температуре. Схема метода приведена на рисунке 1.

Рисунок 1. Схема метода «порошок в трубе»

На конечные свойства сверхпроводника оказывает влияние множество факторов, среди которых: характеристики исходного порошка-прекурсора, конструкция композиционного проводника, режимы механической и термической обработки. Поперечное и продольное сечения готового ленточного сверхпроводника представлены на рисунке 2.

Рисунок 2. Сечения ленточных проводников Bi-2223

Важным параметром конструкции проводника является коэффициент заполнения по керамике (КЗ). КЗ показывает долю керамической составляющей в проводе. Задача вычисления КЗ важна для определения оптимальных режимов механической обработки, а также расчёта токонесущей способности. Токонесущая способность является одной из основных характеристик готового проводника.

2.2. Втсп второго поколения

Высокотемпературные сверхпроводники второго поколения представляют собой многослойные ленты, состоящие из металлической ленты-подложки с нанесёнными на неё буферными слоями и слоем сверхпроводящей керамики RBa2Cu3Ox (R-123, где R - Y, Dy, Sm, Gd и другие редкоземельные элементы). Сверхпроводящий слой покрывается защитным слоем серебра и шунтирующим слоем меди.

Существуют два различных подхода для создания ленты подложки и первого буферного слоя. Текстура может создаваться в самой ленте-подложке, на которую эпитаксиально наносится затравочный буферный слой. Такая технология получила название RABiTS (Rolling Assisted Biaxially Textured Substrates). При использовании другой технологии, исходная металлическая лента не текстурирована, а необходимая структура буферного слоя создаётся за счёт специальных условий вакуумного напыления. Такой тип технологии называется IBAD (ion-beam assisted deposition) либо ISD (inclined-substrate deposition).

Для получения высокой степени текстуры сверхпроводящей керамики используются технологии эпитаксиального роста: физические и химические. К физическим технологиям относят напыление в вакууме (лазерное (PLD - Pulsed Laser Deposition)) или электронно-лучевое (e-beam deposition). Химические технологии представлены осаждением из жидкой фазы (метод MOD - Metal Organic Deposition) или паровой фазы (метод MOCVD - Metal Organic Chemical Vapour Deposition).