Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

UnEncrypted

.pdf
Скачиваний:
11
Добавлен:
16.05.2015
Размер:
6.75 Mб
Скачать

Multi-scale models for drug resistant tuberculosis

 

Rodrigues, P.; Rebelo, C.; Gomes, M.G.M. .................................................................

1071

A new approach for adaptive linear discrimination in brain computer interfaces

Rodríguez-Bermúdez, G.; García-Laencina, P.J.; Roca-González, J. ........................

1083

A Bicriterion Server Allocation Problem for a Queueing Loss System

 

Sá Esteves, J. ..............................................................................................................

1087

Numerical Methods for the Computation of Stability boundaries for Structured

population models

 

Sánchez, J.; Getto, P.; de Roos, A.M.; Lessard, J.P. ..................................................

1094

Input-Output Systems in the Study of Dichotomy and Trichotomy of Discrete

Dynamical Systems

 

Sasu, A.L.; Sasu, B. .....................................................................................................

1096

A Comparative Study on the Dichotomy Robustness of Discrete Dynamical Systems

Sasu, B.; Sasu, A.L. .....................................................................................................

1099

CRYSCOR, a program for post Hartree-Fock calculations on periodic systems

 

Schütz, M. .....................................................................................................................

1101

Parallelization of the interpolation process in the Koetter-Vardy soft-decision list

decoding algorithm

 

Simarro-Haro, M.A.; Moreira, J.; Fernández, M.; Soriano, M.; González, A.; Martínez-

Zaldívar, F.J. ................................................................................................................

1102

Numerical simulation of a receptor-toxin-antibody interaction

 

Skakauskas, V.; Katauskis, P.; Skvortsov, A. ..............................................................

1111

Fractional calculus and superdiffusion in epidemiology: shift of critical thresholds

Skwara, U.; Martins, J.; Ghaffari, P.; Aguiar, M.; Boto, J.; Stollenwerk, N. ................. 1118

Completed Richardson Extrapolation for Option Pricing

 

Tangman, D.Y. .............................................................................................................

1130

Parallelization and Performance Analysis of a Brownian Dynamics Simulation

 

using OpenMP

 

Teijeiro, C.; Sutmann, G.; Taboada, G.L.; Touriño, J. .................................................

1143

Forward-Backward Differential Equations: Approximation of Small Solutions

 

Teodoro, M.F.; Lima, P.M.; Ford, N.J.; Lumb, P.M. .....................................................

1155

Measuring the Impact of Configuration Parameters in CUDA Through

 

Benchmarking

 

Torres, Y.; González-Escribano, A.; Llanos, D.R. ....................................................... 1161

A Factorized Novel Bound Analysis For Multivariate Data Modelling:

 

Interval Factorized HDMR

 

Tunga, B.; Demiralp, M. ...............................................................................................

1173

Probabilistic Evolution of the State Variable Expected Values in Liouville Equation Perspective, for a Many Particle System Interacting Via Elastic Forces

Tunga, B.; Demiralp, M. ...............................................................................................

1186

Page 13 of 1573

Solution for a two-dimensional Lamb´s problem using GFDM

Ureña, F.; Benito, J.J.; Gavete, L.; Salete, E.; Alonso, A. ........................................... 1198

A not so common boundary problem related to the membrane equilibrium equations

Viglialoro, G.; Murcia, J. ...............................................................................................

1206

Strategy for selecting the frequencies in trigonometrically-fitted Störmer/Verlet type methods

Vigo-Aguiar, J.; Ramos, H. .......................................................................................... 1212

The method of increments: an extension to the multi-refererence treatment in metals

Voloshina, E.; Paulus, B. ..............................................................................................

1223

Exponential time differenting schemes for reaction-diffusion problems

 

Wade, B. A. ..................................................................................................................

1227

File fragment classification: An application of a neural network and linear programming based discriminant model

Wilgenbus, E.; Kruger, H.; du Toit, T. ..........................................................................

1237

Page 14 of 1573

?

Volume IV....................................................................................................................

1249

Index.............................................................................................................................

1251

Mathematical model to predict the effects of pregnancy on antibody response during viral infection

Abdulhafid, A.; Andreansky, S.; Haskell, E.C. .............................................................

1267

Models for copper(I)-binding sites in proteins

 

Ahte, P.; Eller, N.A.; Palumaa, P.; Tamm, T. ...............................................................

1275

Comparison of eigensolvers efficiency in quadratic eigenvalue problems

 

Aires, S.M.; d' Almeida, F.D. ........................................................................................

1279

An efficient and reliable model to simulate elastic, 1-D transversal waves

 

Alcaraz, M.; Morales, J.L.; Alhama, I.; Alhama, F. .......................................................

1284

Density driven fluid flow and heat transport in porous: Numerical simulation by network method

Alhama, I.; Canovas, M.; Alhama, F. ...........................................................................

1290

Tilted Bianchi Type IX Cosmological Model in General Relativity

 

Bagora(Menaria), A.; Purohit R.....................................................................................

1298

Catalytic reactions of free gold and palladium clusters in an ion trap

 

Bernhardt, T.M. .............................................................................................................

1309

Prediction of Stable Low Density Materials Inspired by Nanocluster Building Block Assembly

Bromley, S.T. .............................................................................................................. 1314

Numerical Methods for the Intrinsic Analysis of Fluid Interfaces: Applications to Ionic Liquids

Cordeiro, M.N.D.S.; Jorge, M. ......................................................................................

1318

Mathematical Model for Food Gums Using Non-Integer Order Calculus

 

David S. A.; Katayama, A.H.; de Oliveira, C. ...............................................................

1321

Page 15 of 1573

Improving Metadata Management in a Distributed File System

 

Díaz, A.F.; Anguita, M.; Ortega, J. ...............................................................................

1333

Computational soft modeling of video images of a gas-liquid transfer

 

experiment

 

Ferreira, M.M.C.; Gurden, S.P.; de Faria, C.G ............................................................

1337

A Direct Algorithm for Finding Nash Equilibrium

 

Gao, L.S. ......................................................................................................................

1338

Pole: A Planning Tool to Maximize the Network Lifetime in Wireless Sensor

 

Networks

 

Garcia-Sanchez, A.J.; Garcia-Sanchez, F.; Rodenas-Herraiz, D.; Garcia-Haro, J. ....

1345

Gallium Clusters: from superheating to superatoms

 

Gaston, N.; Schebarchov, D.; Steenbergen, K.G. .......................................................

1357

Born Oppenheimer DFT molecular dynamics and DFT-MD methods for

 

biomolecules

 

Goursot, A.; Mineva, T.; Salahub, D.R. ........................................................................

1361

The Optimum Performance of Air-conditioning, Ventilation and Heat

 

Insulation Systems of Crew and Passenger Cabins of Airplanes

 

Gusev, S.A.; Nikolaev, V.N...........................................................................................

1366

Atomistic Simulations of Functional Gold Nanoparticles in Biological

 

Environment

 

Heikkilä, E.; Gurtovenko, A.A.; Martinez-Seara, H.; Vattulainen, I.; Häkkinen, H.;

 

Akola, J. ....................................................................................................................... 1376

A general purpose non-linear optimization framework based on Particle Swarm Optimization

Izquierdo, J.; Montalvo, I.; Herrera, M.; Pérez-García, R. ........................................... 1385

Quantum-chemical studies of organic molecular crystals - structure and

 

spectroscopy

 

Jacob, C.R.; Tonner, R. ...............................................................................................

1397

Computational study of solids irradiated by intense x-ray free-electron lasers

 

Kitamura, H. .................................................................................................................

1402

Computational Methods for Problems of Viscoelastic Solid Deformation with

 

Application to the Diagnosis of Coronary Heart Disease

 

Kruse, C.; Maischak, M.; Shaw, S.; Whiteman, J.; Greenwald, S.; Brewin, M.;

 

Birch, M.; Banks, H.T.; Kenz, Z.; Hu, S. .......................................................................

1412

Modeling Earthen Dikes: Sensitivity Analysis and Calibration of Soil

 

Properties Based on Sensor Data

 

Krzhizhanovskaya, V.V.; Melnikova, N.B......................................................................

1414

Modeling of the Charge Density for Long and Short Channel Double Gate MOSFET Transistor

Latreche, S.; Smali B. .................................................................................................. 1425

Effective rate constants for nanostructured heterogeneous catalysts

 

Lund, N.; Zhang, X.Y.; Gaston, N.; Hendy, S.C............................................................

1436

Page 16 of 1573

A Fast Recursive Blocked Algorithm for Dense Matrix Inversion

 

Mahfoudhi, R.; Mahjoub, Z............................................................................................

1440

Data Mining with Enhanced Neural Networks

 

Martínez, A.; Castellanos, A.; Sotto, A.; Mingo, L.F. ................................................... 1450

Numerical methods for unsteady blood flow interaction with nonlinear

 

viscoelastic arterial vessel wall

 

Mihai, F.; Youn, I.; Seshaiyer, P. ................................................................................. 1462

A mathematical model for the Container Stowage and Ship Routing Problem

 

Moura, A.; Oliveira, J.; Pimentel, C. .............................................................................

1473

Dimensional control of tunnels using topographic profiles: a functional

 

approach

 

Ordóñez, C.; Argüelles, R.; Martínez, J.; García-Cortés, S. ........................................

1485

Dynamic Analysis of Orthotropic Plates and Bridges Structure to Moving

 

Load

 

Rachid, L.; Meriem, O. .................................................................................................

1492

Optimal control strategies of Aedesaegypti mosquito population using the

 

sterile insect technique and insecticide

 

Rafikova, E.; Rafikov, M.; Mo Yang, H. ........................................................................

1504

Determining the thermal properties of drill cuttings using the point source

 

method: Thermal model and experiment procedure

 

Rey-Ronco, M.A.; Alonso-Sánchez, T.; Coppen-Rodríguez, J.; Castro-Gª, M.P. .......

1509

Electron Transfer and Other Reactions in Proteins – Towards an

 

Understanding of the Effects of Quantum Decoherence

 

Salahub, D.R.................................................................................................................

1521

Travelling wave solutions for ring topology neural fields

 

Salomon, F.; Haskell, E.C. ...........................................................................................

1523

High-Pressure Simulations – Squeezing the Hell out of Atoms

 

Schwerdtfeger, P.; Biering, S.; Hasanbulli, M.; Hermann, A.; Wiebke, J.; Wormit,

 

M.; Pahl, E.....................................................................................................................

1532

GA algorithm for generating geometric random variables of order k

 

Shmerling, E. ................................................................................................................

1534

Data analysis of photometric observations by HDAC onboard Cassini: 3D mapping and in-flight calibrations

Skorov, Y.;Reulke, R.; Keller, H.U.; Glassmeier, K.H. .................................................

1538

The transport properties of the near-surface porous layers of a commentary nucleus: Transition-probability and effective thermal conductivity

Skorov, Y.; Schmidt, H.; Blum, J.; Keller, H.U. ............................................................

1543

Dynamics of Conformational Modes in Biopolymers

 

Stepanova M; Potapov A. ............................................................................................

1547

Page 17 of 1573

Classification of Workers according to their Risk of Musculoskeletal Discomfort using the K-Nearest Neighbour Technique

Suárez Sánchez, A.; de Cos Juez, F.J.; Iglesias Rodríguez, F.J.; Sánchez

 

Lasheras, F.; García Nieto, P.J. ...................................................................................

1548

On the Problem of Efficient Search of the Entire Set of Suboptimal Routes in a Transportation Network

Valuev, A. .....................................................................................................................

1560

Reactions of Aun+ (n = 1-4) with SiH4 and Finite Temperature Simulations of Aun (n = 24-40)

Vey, J.; Hamilton, I.P. ...................................................................................................

1564

Computer vision algorithmization and intelligent traffic monitoring

Vinogradov, A. ..............................................................................................................

1567

 

 

Addendum:

A viability analysis for a stock/price model

 

Jerry C. and Raissi N.....................................................................................................................

1574

Computing alphalimit sets: a note on their definition.

 

García-Guirao J.L. and Lampart M...............................................................................................

1585

.

 

A Software Infrastructure for Test-Driven Learningin Introductory

 

Programming Courses

 

Guil F., Barón J, Corral A., Martínez M., Martín I........................................................................

1593

Page 18 of 1573

Proceedings of the 12th International Conference on Computational and Mathematical Methods

in Science and Engineering, CMMSE 2012 July, 2-5, 2012.

Principal Logarithm of matrix by recursive methods

J. Abderram´an Marrero1, R. Ben Taher2 and M. Rachidi2

1 Department of Mathematics Applied to Information Technologies, Telecommunication Engineering School, U.P.M. Technical University of Madrid, Spain

2 Group of DEFA - Department of Mathematics and Informatics, Faculty of Sciences,

University My Ismail, Meknes, Morocco

emails: jc.abderraman@upm.es, bentaher89@hotmail.fr, mu.rachidi@hotmail.fr

Abstract

We propose new methods for producing explicit representations of the principal matrix logarithm, without to use the Jordan canonical form of the original matrix. They are based on the H¨orner decomposition of the matrix and the Binet formula for the general solution of linear recurrence relations.

Key words: Binet formula, Recurrence relations, Matrix powers, Logarithm of a matrix.

MSC 2000: Primary 15A99, 40A05 Secondary 40A25, 45M05, 15A18.

1Decomposition of the principal logarithm of matrix

The logarithm of matrix occurs in various fields of mathematics, applied sciences and engineering; e.g. see [8]. Particularly, computing logarithms of real matrices turns out to be crucial in some class of problems of medical imaging and system of identification [1]. Various approaches, methods and algorithms are expanded in producing representations of the matrix logarithm (see [4, 6, 8]), and its computation still an exciting area. On the other hand, the numerical aspect of the matrix logarithm is also an interesting research subject (see [8]).

Originally, for a matrix B in Md(C), the algebra of square matrices, the problem consists in finding X Md(K), satisfying the equation eX = T . Any solution of this equation, denoted X = log(B), is called logarithm of B. It was shown in [6] that a matrix B has a logarithm (not necessary real) if and only if B is invertible. Moreover, the matrix equation exp(X) = B may have infinitely many solutions. Meanwhile, if B GL(d, C) have no

c CMMSE

Page 19 of 1573

ISBN:978-84-615-5392-1

Principal Logarithm of matrix by recursive methods

eigenvalues on the closed negative real axis, there exists a unique logarithm X of B, called the principal logarithm of B and denoted by X = Log(B), e.g. see [4, 6, 8]. This unique matrix logarithm has all its eigenvalues into the horizontal strip determined by the condition i(X) C : |Im(λi(X))| < π}. In addition, if B is a real matrix then its principal logarithm is real.

The simplest way to define Log(B) is the Taylor series Log(B) = n≥0(1)n (B−Id)n+1 ,

n+1

which makes sense when A = Id − B (Id is the identity matrix), satisfies A < 1, for any matrix norm . , or the spectral radius verifies ρ(A) = max{|λ|; λ σ(A)} < 1, σ(A) is the spectrum of A. More precisely, the computation of Log(B) was based in various

papers (see [4, 6]) on the powers series Log(Id − tA) =

n≥1

tn

An, when it converges.

n

For A = Id − B and t = 1 we recover the series of Log(B). Let A be in Md(C) such that

 

A

 

< 1 and R(z) = zr

a0zr−1

− · · · −

ar

1 (ar

1 = 0) such that R(A) = Θ (zero

 

 

 

 

 

 

 

 

d

matrix). The decomposition of An (n ≥ r) in the H¨orner basis A0 = Id, A1 = A − a0Id,

· · · , Ar−1 = Ar−1 − a0Ar−2 − · · · − ar−2Id, is

An = unA0 + un−1A1 + ... + un−r+1Ar−1, for n ≥ r

(1)

(see [2, 3]) where u0 = 1, u1 = · · · = u−r+1 = 0, and for n ≥ 1 we show that the term un verifies the linear recursive relation of order r,

un+1 = a0un + · · · + ar−1un−r+1,

(2)

where a0, a1, · · · , ar−1 are specified as the coe cients of {un}n≥−r+1 (see [5]). Using (1) we derive that, for t R with σ(Id − tA) (R{0}) = and |t| < 1/ A , we have

Theorem 1 [H¨orner decomposition]. Under the preceding data, we obtain

 

Log(Id − tA) =

r−1

 

 

tn

 

 

 

 

(−ϕs(t)) As, where ϕs(t) =

un−s

 

.

 

 

(3)

 

n

 

 

 

 

=0

 

n=1

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

For the polynomial decomposition of An we obtain An =

 

r−1

p

a

u

n−j

Ap,

for n r. Therefore, the polynomial decomposition of Log(I

p=0

j=0

r−p+j−1

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2Binet formula for the principal logarithm of matrix

l mi1

i

 

The solutions of sequence (2) can be written using the Binet formula un =

ci,j nj λin,

=1

j=0

for all n N, where the λi (1 ≤ i ≤ l) are the roots of the polynomial R(z), of multi-

plicities m

i

(1

i

l). The coe cients c

i,j

are obtained by solving the linear system

l

m

 

 

 

 

i=1

j=1i

ci,j nj λin = un(= δ0,−n), n = −r + 1, ..., −1, 0 (see [5]). Set 1 = {i (1 ≤ i ≤

c CMMSE

Page 20 of 1573

ISBN:978-84-615-5392-1

J. Abderraman´ Marrero, R. Ben Taher and M. Rachidi

l) : mi = 1} and

2

= {i (1

≤ i ≤ l); mi

> 1}. Then, the Binet formula takes the

1 = and

2

= .

 

+

 

 

 

nk λn. For reason of generality we suppose that

form u

n

=

i

c λn

i 2

mi1 c

i,k

 

 

1 i

i

 

k=0

 

i

Combining (3) of Theorem 1 with the Binet formula of (2), we derive the following main results on the new explicit representation for the principal logarithm of matrix.

Theorem 2 Let A be in Md(C) such that A < 1 and P (A) = Θd, where P (z) =

zr

a0zr−1

− · · · −

ar

1

(ar

1

= 0). Then, for t

 

R with σ(I

d

tA)

(R

0

) =

 

,

 

 

 

 

 

 

 

 

 

 

 

 

{ }

 

 

we have Log(Id − tA) =

 

r−1

(Qs(t) + Φs(t) + Ψs(t))As, such that Qs(t) is a polynomial of

s=0

degree ≤ r − 1, given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qs(t) =

 

s−1

 

ciλin−s +

mi1

cij (n − s)j λni

−s n .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tn

 

 

 

 

 

 

 

 

 

 

 

 

 

The function Φs(t) is

 

 

n=1

 

i 1

 

 

 

i 2

j=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ci

 

 

 

 

 

 

mi1 cij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Φs(t) =

 

 

 

 

λs

Log(1 − λit) +

 

 

λs

(−s)j Log(1 − λit),

 

i

1

 

 

 

i

 

 

 

 

i 2 j=0

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and finally the rational function Ψs(t) is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mi1 cij

j

 

j

 

 

 

 

 

 

Ψs(t) =

i

 

 

2

 

k=1

 

 

 

 

 

 

 

 

 

 

j=1

λis

k (−s)j−k Dk (Log(1 − λit))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

mi1 cij

 

(j)λit +

 

j ( s)j−k Pk−1(λit)

 

i

 

 

2

 

j=1

λis

(1 − λit)

j

k

(1 − λit)k

 

 

 

 

k=2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4)

(5)

(6)

where D = t

d

(degree derivation) is a di erential operator and the Pn are polynomials

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dPn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

satisfying Pn+1(t) = t(1 + t)

 

(t) − ntPn(t), for n ≥ 1.

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

Example 1 Let consider B =

0

5

 

 

1

. Then, A = I3 −B =

1

 

5

 

 

 

1

 

16

 

32

16

 

 

32

1 1

0

1

0

 

0

 

 

 

 

0 1

1

 

1 n

 

0

11 n

.

0

 

is a (real) companion matrix.

Binet formula

yields un = 4

2

(3 + n)

4

 

 

 

For-

mulas of Theorems 1 and 2 provide us the principal logarithm of matrix B;

Log(B) =

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

ϕ

(1)) A , where (

ϕ

(1)) = 2 ln(2)

3 ln(3) +

1

, (

ϕ

(1)) = 8 ln( 2 ) + 4

, and

 

s=0

s

s2

 

16

 

0

 

 

 

 

 

 

 

3

 

 

 

1

 

 

 

3

 

3

 

(−ϕ2(1)) = 16 ln( 3 ) +

3

. Matrices A0 = I3, A1, and A2 are the components of the H¨orner

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

basis of the matrix A. A direct computation shows that,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 ln(2)

 

3 ln(3) +

1

 

2 ln(

3 )

 

1

 

 

 

 

1 ln( 2 ) +

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

 

 

 

 

 

 

 

 

 

 

2

4

3

 

 

 

2

4

 

 

 

 

4

3

 

 

 

 

 

 

 

Log(B) =

 

 

 

5 ln(3)

 

 

 

 

1

 

 

1

2

1

 

 

 

 

 

 

 

 

8 ln(

3 ) +

3

6 ln(2)

 

 

2 ln( 3 ) +

6 .

 

 

 

 

 

 

 

 

16 ln(

3 ) +

3

 

 

8 ln(

2 ) 4

 

 

 

 

 

3

ln(2)

 

 

 

c CMMSE

Page 21 of 1573

ISBN:978-84-615-5392-1

Principal Logarithm of matrix by recursive methods

3Concluding remarks and perspective

In the best of our knowledge expressions (4), (5) and (6) are not current in the literature. Generally in various studies the Jordan canonical form of the matrix B plays an important role for determining Log(Id − tA) (or Log(B)) (see [4, 8]). Meanwhile, the Jordan canonical form is not necessary for exhibiting the H¨orner (or polynomial) decomposition of Log(Id − tA), and also for the usage of Binet formula in Theorem 2 and Example 1.

Our methods have some interesting perspective. We have already obtained some results. Particularly, the problem of computing the principal logarithm of matrices of order 2 and 3 are detailed. Moreover, for σ(A) D = {z C : |z − 1| < 1}, our methods work by considering some matrix transformations.

References

[1]V. Arsigny, X. Pennec and N. Ayache, Polyrigid and polya ne transformations: a novel geometrical tool to deal with non-rigid deformations application to the registration of histological slices, Medical Image Analysis, 9 (2005), 507–523.

[2]R. Ben Taher and M. Rachidi, On the matrix powers and exponential by r- generalized Fibonacci sequences methods: the companion matrix case, Linear Algebra and Its Applications, 370 (2003) 341–353.

[3]R. Ben Taher, M. Mouline and M. Rachidi, Fibonacci-Horner decomposition of the matrix exponential and the fundamental system of solutions, Electron. J. Linear Algebra, 15 (2006) 178–190.

[4]W. J. Culver, On the existence and uniqueness of the real logarithm of matrix, Proc. of the Amer. Math. Soc., 17, No. 5 (1966) 1146–1151.

[5]F. Dubeau, W. Motta, M. Rachidi and O. Saeki, On weighted r-generalized Fibonacci sequences, Fibonacci Quarterly, 35 (1997) 102–110.

[6]F. R. Gantmacher, Theory of Matrices, Vol. I, Chelsea, New York, 1960.

[7]G. Golub and C. Van Loan, Matrix Computations, 3rd Ed., Johns Hopkins Press, Baltimore, 1996.

[8]N. Higham, Functions of Matrices: Theory and Computation. SIAM Philadelphia, 2008.

c CMMSE

Page 22 of 1573

ISBN:978-84-615-5392-1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]