Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ для студ МБФ. doc.docx
Скачиваний:
113
Добавлен:
12.02.2015
Размер:
1 Mб
Скачать

11.2. Ионная связь

Предельным случаем ковалентной полярной связи является ионная связь. При очень большом различии в электроотрицательности атомов(см. табл. 1 Приложения) при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате оба атома становятся ионами. Например, при взаимодействии атомов натрия и хлора они превращаются в ионы Na+ и Cl- ,между которыми возникает электростатическое притяжение. Легче всего образуют катионы элементы с малой энергией ионизации ―щелочные и щелочно-земельные металлы. Простые анионы легче всего образуют р-элементы VII группы вследствие их высокого сродства к электрону. онные молекулы существуют только в парах над нагретыми солями. Энергия разрыва ионной связи не определяется энергией притяжения ионов.

Е ионизации Cs = 3,86 эВ > Е сродства к электрону Cl = 3,83 эВ. Таким образом, даже такая «предельно ионная» молекула CsCl фактически не является ионной на 100%.

Отклонения от чисто ионной связи можно рассматривать как результат электростатического воздействия ионов друг на друга, считая их деформируемыми системами, при этом не учитывающих изменение кинетической энергии электронов и их волновые свойства.

Ненаправленность и ненасыщенность ионной связи

Электрические заряды ионов обусловливают их притяжение и отталкивание и в целом определяют стехиометрический состав соединения. Ионы можно представить как заряженные шары силовые поля которых равномерно распределяются во всех направлениях в пространстве. Поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении. Следовательно, ионная связь, в отличие от ковалентной, характеризуется ненаправленностью. Взаимодействие друг с другом двух ионов противоположного знака не может привести к полной взаимной компенсации их силовых полей. В силу этого у них сохраняется способность притягивать ионы противоположного знака и по другим направлениям. Следовательно, в отличие от ковалентной ионная связь характеризуется также ненасыщаемостью.

Электрическое поле, создаваемое ионами, имеет сферическу.ю симметрию, и действует одинаково на все ионы. Поэтому количество ионов окружающих данный ион и их пространственное расположение определяется только величинами зарядов ионов и их размерами.

Поляризация и поляризуемость ионов

В электрическом поле ион или молекула деформируются, т.е. в них происходит относительное смещение ядер и электронов. Такая деформируемость ионов и молекул называется поляризуемостью. Поскольку наименее прочно в атоме связаны электроны внешнего слоя, то они испытывают смещение в первую очередь.В первом приближении поляризация иона обусловлена только деформацией внешней электронной оболочки. При одинаковых зарядах и близких радиусах поляризация минимальна у ионов с конфигурацией благородного газа и максимальна – у ионов с 18 внешними электронами.

Значительная поляризуемость ионов d-элементов объясняется большим числом внешних электронов у них. Наибольшее поляризующее действие оказывают те ионы, которые слабо поляризуются. Если катион легко деформируется, то возникший в нём диполь усиливает его поляризующее действие на анион; анион, в свою очередь, оказывает дополнительное воздействие на катион – возникает дополнительный поляризационный эффект. Дополнительный поляризационный эффект и тем самым суммарное поляризующее действие особенно велики для 18-электронных катионов(Zn2+,Cd2+,Hg 2+ и др.). Увеличение стягивания ионов в результате их поляризации приводит к тому, что длина диполя оказывается меньше межъядерного расстояния. Например, в молекуле KCl длина диполя составляет 167пм, а межъядерное расстояние – 267пм. Особенно велики различия у водородсодержащих соединений. Расстояние между ядрами водорода и галогена меньше радиуса иона галогена. Так, r(Cl-)= 181пм, в то время как расстояние между ядрами элементов равно127пм. В отличие от других катионов проникает внутрь электронной оболочки аниона. Проникновение протона внутрь аниона приводит к уменьшению длины диполя и деформируемости аниона. С увеличением деформируемости аниона может произойти полный переход электронов от него к катиону, т.е. образуется ковалентная связь. Наоборот, чем меньше поляризация иона, тем ближе соединение к ионному типу.

Хлорид серебра растворяется в воде хуже хлорида натрия. Радиус Ag+ соизмерим с радиусом Na+, но поляризуемость больше и поэтому в AgCl межъядерное расстояние меньше, а энергия разрыва связи на ионы больше, чем в хлориде натрия. Кислоты Н2СО3 и H2SO3 менее стабильны, чем их соли. Причины:

а) очень сильное поляризующее действие Н+ ;б) протон, внедряясь в кислородный анион, снижает его заряд и уменьшает деформируемость; поэтому HCO3- и HSO3- менее устойчивы, чем CO32- и SO­32-в) второй протон делает частицу ещё менее устойчивой, поэтому H2CO3 и H2SO3легко теряют воду.

Это также является одной из причин, почему кислородсодержащие кислоты — более сильные окислители, чем их соли.

Деформируемость электронной оболочки влияет и на оптические свойства соединений Поглощение лучей связано с возбуждением внешних электронов. Электронные переходы отвечают тем меньшим энергиям, чем более поляризуема частица. Если частица малополяризуема, то возбуждение требует больших энергий, им отвечаеют ультрафиолетовые лучи. Если частица легко поляризуется, то возбуждение требует квантов небольшой энергии, им отвечает видимая часть спектра. В этом случае вещество окрашено. Так PbI2 имеет жёлтую окраску а CaI­2 — бесцветен. Среди сульфидов металлов встречается гораздо больше окрашенных соединений, чем среди оксидов. В ряду PbCl2 – PbBr2– PbI2 окраска соли углубляется.

При образовании ионной связи электрическое поле иона обладает сферической симметрией и поэтому ионная связь не обладает направленностью и насыщаемостью.