Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
luch_diagn_2013_1.doc ( методичка).doc
Скачиваний:
394
Добавлен:
12.02.2015
Размер:
2.57 Mб
Скачать

Аб в

Рис. 5. Рентгенограмма таза и тазобедренных суставов ребенка в возрасте 1 мес. (5А), на схеме (5Б) отражены визуализируемые анатомические структуры (сравните с возможностями ультразвукового исследования (5В) в визуализации элементов тазобедренного сустава у новорожденного, основное преимущество которого в отсутствии воздействия ионизирующей радиации на новорожденного! На схеме (5Б) цифрами обозначены: 1 – диафиз бедренной кости, 2 – центр окостенения подвздошной кости, 3 – крестцовые позвонки, 4 – край вертлужной впадины, 5 – ядро окостенения головки бедренной кости, 6 – защитная пластинка на половые органы, 7 – центр окостенения лобковой кости, 8 – центр окостенения седалищной кости, 9 – линии для оценки врожденного вывиха и/или подвывиха в тазобедреннм суставе. На ультразвуковой томограмме (5В) цифрами обозначены: 1 – подвздошная кость, 2 – головка бедренной кости, 3 – край вертлужной впадины, 4 – проксимальный отдел диафиза бедренной кости.

Радионуклидное исследование используется для исследования обменных процессов в костной ткани. Пациенту внутривенно вводятся фосфатные соединения, меченные радиоактивным технецием (99mТс-пирофосфат, 99mТс-дифосфонат и др.). Интенсивность и скорость включения РФП в костную ткань зависят от – величины кровотока в кости и интенсивности в ней обменных процессов. Изменения этих двух факторов приводят к увеличению или снижению включения РФП в костную ткань и отображаются на сцинтиграммах ввиде «горячих» или «холодных» очагов.

Радионуклидное исследование обычно проводят в поисках «горячих очагов», которые определяются в местах усиления метаболизма (Рис. 6). Это злокачественные поражения костей, воспалительные процессы и переломы в период заживления.

Рис. 6. Сцинтиграммы различных отделов скелета в норме. Радионуклидное исследование обычно проводят в поисках «горячих очагов», которые определяются в местах усиления метаболизма, например, в зонах роста (стрелки).

Рентгеновская анатомия скелета

Костно-суставной аппарат человека выполняет, прежде всего, функцию опоры и движения. Он состоит из большого количества (свыше 200) отдельных костей, тесно связанных между собой.

Каждая кость имеет свою форму, занимает постоянное место в скелете и несет определенную функцию. Строго определенную форму и структурный рисунок имеет не только отдельная кость, но и каждый ее отдел.

Поэтому прежде, чем анализировать рентгенограммы костей и суставов, Вы должны вспомнить их нормальнуюанатомию.

Принято выделять трубчатые кости (длинные: плечевая, кости предплечья, бедренная, кости голени; короткие – ключицы, фаланги, кости пястья и плюсны), губчатые кости (длинные: ребра, грудина; короткие – позвонки, кости запястья, предплюсны и сесамовидные), плоские кости (черепа, таза, лопатки) и смешанные кости (кости основания черепа).

В трубчатой кости различают тело – диафиз и концевые отделы, каждый из которых состоит из эпифиза и метафиза (проксимальный и дистальный). Метафизом называется часть кости, прилегающая к диафизу. Между метафизом и эпифизом можно увидеть поперечную полоску уплотнения костной ткани – эпифизарный шов. Это место, где в детстве располагался ростковый хрящ (ростковая зона).

Каждая кость образована из двух видов костного вещества: компактного, располагающегося всегда по периферии кости, и губчатого, располагающегося центрально. В компактном веществе костные балки очень плотно прилегают друг к другу, поэтому они не различимы на рентгенограммах, и компактная костная ткань отображается в виде интенсивной тени с ровными контурами. Губчатое вещество образует ячеистую структуру. Она обусловливает на снимках сложный и стройный рисунок костных балок, ориентированных по основным линиям силовой нагрузки.

В зависимости от формы кости количественное соотношение губчатого и компактного вещества различно. Так, в длинных костях тело (диафиз) представляет собой трубку, стенки которой образованы только компактным веществом.

По направлению к концам кости слой его постепенно истончается, превращаясь в очень тонкую замыкающую пластинку на суставных поверхностях кости. Середина диафиза является полостью, заполненной костным мозгом (вот почему эти кости называют еще трубчатыми). В метафизах на фоне костно-мозгового канала начинают определяться балки губчатого костного вещества, по направлению к эпифизу количество их увеличивается, одновременно истончается компактное вещество, образующее корковый слой кости. Эпифизы построены из губчатого вещества, а компактно покрывает их только снаружи тонким корковым слоем.

Пространство между перекладинами губчатого вещества так же, как и полость трубчатой кости, заполнены костным мозгом, который в среднем составляет 5% веса тела.

Снаружи каждая кость, за исключением суставных поверхностей, покрыта надкостницей (периостом). В разных костях и в разных отделах одной и той же кости она имеет различную толщину. Внутри кости каждая костная балка покрыта так называемой внутренней надкостницей, или эндостом. Эндост выстилает и полость костномозгового канала. Суставные концы покрывает суставной гиалиновый хрящ. Наружный контур кортикального слоя резкий и четкий, а в местах прикрепления связок и сухожилий мышц он неровен. Между суставными концамикостейна рентгенограммах определяется равномерная светлая полоса, которую называют рентгеновской суставной щелью. Это просветление проекционно соответствует, главным образом, суставным хрящам и другим внутрисуставным образованиям (дискам, менискам, внутрисуставным связкам), а также истинной анатомической суставной щели, ширина которой очень мала (см. рис. 1, рис. 2).

Рентгеновское изображение плоских костей существенно отличается от картины длинных и коротких трубчатых костей. В своде черепа хорошо дифференцируется губчатое вещество между двумя тонкими компактными пластинками. В костях таза также выделяется структура губчатого вещества, покрытого по периферии довольно выраженным кортикальным слоем. Смешанные кости имеют в рентгеновском изображении самую различную форму, которую можно правильно оценить, производя снимки вразличных проекциях.

Отдельно необходимо рассматривать рентгеновскую анатомию позвоночника.

Позвоночник состоит из 24 позвонков, крестца и копчика. У здоровых людей он образует характерные физиологические изгибы: кпереди (лордоз) в шейном и поясничном отделах и кзади (кифоз) – в грудном и крестцовом отделах. Величина тел позвонковпостепенно нарастает вкаудальном направлении, т.е. книзу.

На рентгенограммах тело позвонка имеет форму прямоугольника с несколько вогнутыми боковыми гранями и закругленными углами. Все боковые поверхности тела позвонка дают на рентгенограммах по одному контуру, а горизонтальные площадки тел позвонков у взрослого человека два ровных и четких контура. Между телами позвонков видны промежутки, которые занимают межпозвоночные хрящевые диски. Ширина правой и левой половины каждого диска одинаковая, так как замыкающие пластинки смежных позвонков почти параллельны друг другу. Под замыкающими пластинками находится равномерная мелкоячеистая структура губчатого костного вещества, составляющего основу тела позвонка (см. рис. 1, рис. 2).

Скелет проходит сложный путь развития. Он начинается формированием соединительно-тканного скелета. Со второго месяца утробной жизни последний постепенно преобразуется в хрящевой скелет (только свод черепа, лицевые кости и тела ключиц не проходят хрящевой стадии). Затем осуществляется длительный переход от хрящевого к костному скелету, который завершается в среднем к 25 годам. Процесс окостенения скелета хорошо прослеживается на рентгенограммах. У новорожденного из хряща состоит большинство концов костей – эпифизов и апофизов, будущих выступов на поверхности костей, к которым прикрепляются мышцы и сухожилия, поэтому рентгеновские суставные щели у ребенка кажутся очень широкими. В последующие годыпоявляются точки окостенения во всех эпифизах и апофизах.

Слияние эпифизов с основной массой кости (так называемое синостозирование) происходит в определенном хронологическом порядке и, как правило, относительно симметрично с обеих сторон (Рис. 7).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]