Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по физической химии-часть1.doc
Скачиваний:
44
Добавлен:
25.11.2019
Размер:
1.63 Mб
Скачать

1.20 Уравнение изотермы реакции

ΔG = Σμidni = ν3 μ3 + ν4 μ4 – ν1 μ1 – ν2 μ2

ΔG = RT (ν3 μ03 + ν4 μ04 – ν1 μ01 – ν2 μ02) + RT ( ν3 lnP13 +

+ ν4 lnP14 – ν1 lnP11 – ν2 lnP12)

ΔG = RT (ν3 lnP13 + ν4 lnP14 – ν1 lnP11 – ν2 lnP12) - RTlnKp

ΔG = RT (ln ) – lnKp - уравнение изотермы

ΔG = RT (lnK1p - lnKp)

если Рi = 1 атм

ΔG0 = - RT lnKp

Kp = e-ΔG0/RT

уравнение нормального химического сродства

Уравнение изотермы позволяет получить возможность определить

направление процесса

1. lnK1 p < lnKp ΔG < 0 реакция идет в прямом направлении

2. lnK1p > lnKp ΔG > 0 реакция идет в обратном направлении

3. lnK1p = lnKp ΔG = 0 равновесие

1.21 Зависимость константы равновесия от температуры

ΔG = Δ H + T( )p

ΔG = RT(lnK1p - lnKp) = ΔH + T(RlnK1p - RlnKp - RT )

ΔH = RT2

= - уравнение изобары

= - уравнение изохоры

ΔH > 0 T↑ Kp

ΔH < 0 T↑ Kp

N2 + 3H2 = 2NH3 - экзотермическая реакция

Следовательно, синтез аммиака следует проводить при низких температурах.

Интегрирование уравнения дает

ln( ) = - ( - )

1.21 ЗАВИСИМОСТЬ КОНСТАНТЫ РАВНОВЕСИЯ ОТ ДАВЛЕНИЯ

Kp = KN PΔn

KN = Kp P-Δn

lnKN = lnKp - ΔnlnP

= -

PΔV = ΔnRT

=

= -

ΔV > 0 P↑ KN

ΔV < 0 P↑ KN

1.22 ПРИНЦИП ПОДВИЖНОГО РАВНОВЕСИЯ (ПРИНЦИП ЛЕ-ШАТЕЛЬЕ)

Анализируя характер влияния температуры на константу равновесия и степень превращения, можно заметить ,что увеличение температуры всегда смещает равновесие в эндотермическом направлении. Это значит, например, что если реакция экзотермическая, то при dT>0 равновесие смещается влево, т.е. в направлении, когда выделение теплоты уменьшается и, наоборот, если реакция эндотермическая, то увеличение температуры смещает равновесие вправо. По принципу Ле-Шателье - Брауна - любая физико-химическая система, находящаяся в состоянии равновесия, стремится удержать состояние равновесия и на любое влияние извне отвечает процессом, который стремится парализовать это влияние, противостоять изменениями смещает систему в новое состояние равновесия.

1.23 Тепловая теорема нернста

Сопоставление тепловых эффектов и изменения энергии Гиббса в реакциях, происходящих в конденсированных системах при различных температурах, показывает, что в области низких температур при приближении к абсолютному нулю значения тепловых эффектов и изменения энергии Гиббса сближаются. Тепловая теорема является постулатом, утверждающим, что это сближение продолжается и при дальнейшем понижении температуры, причем при абсолютном нуле и вблизи него кривые соприкасаются и общая для них касательная параллельна оси температур.

Математически ΔG = ΔH

lim│T→0 = lim│T→0 = 0

Из тепловой теоремы вытекает ряд следствий

( )p = -ΔS при Т → 0

lim[ΔS]T→0 = 0 [ΔS]T=0 = 0

т.е. вблизи абсолютного нуля все реакции, совершающиеся в конденсированных системах ,не сопровождаются изменением энтропии.

Второе следствие получим, применяя условие

( )p = ΔC

lim[ΔC]T→0 = 0 [ΔC]T=0 = 0

т.е. вблизи абсолютного нуля изменение теплоемкости твердых реагирующих веществ бесконечно мало отличается от нуля. Можно показать, что при очень низких температурах не только ΔS и ΔС твердых тел стремятся к нулю, но и многие другие свойства тел (объем, давление насыщенного пара и др.) изменяются с температурой так, что их производные по температуре стремятся к нулю. Этим объясняется принцип недостижимости абсолютного нуля (называемый также третьим законом термодинамики),согласно которому никакие процессы не могут снизить температуру до абсолютного нуля.