- •Примеры расчета магнитных полей Поле бесконечно длинного цилиндрического проводника
- •Поле коаксиального кабеля
- •Поле двухпроводной линии
- •Поле кругового контура с током
- •Поле магнитного диполя
- •Электрическое поле постоянного тока Электрическое поле в диэлектрике, окружающем проводники с постоянными токами
- •Электрическое поле в проводящей среде
- •Аналогия между электрическим полем постоянного тока и электростатическим полем
Электрическое поле постоянного тока Электрическое поле в диэлектрике, окружающем проводники с постоянными токами
Постоянный ток, помимо магнитного поля, создает также электрическое поле. Рассмотрим его основные свойства.
Если рассматриваемая
среда является однородной
и в ней отсутствуют свободные заряды
,
то потенциал
удовлетворяет уравнению Лапласа
,
a система уравнений имеет вид:
. (7.7.1)
Таким образом,
уравнения, описывающие электрическое
поле постоянного тока в идеальном
диэлектрике, окружающем проводники,
совпадают с уравнениями, описывающими
электростатическое поле. Однако
электрическое поле постоянного тока
отличается от электростатического.
Электрическое поле постоянного тока
существует и в проводящей среде. В этом
случае вектор
связан с вектором
соотношением
.
Это приводит к изменению граничных условий на поверхности проводника по сравнению с граничными условиями в случае электростатики. Так как электрический ток в проводнике создает падение потенциала, то поверхность проводника уже не будет эквипотенциальной и на ней появится отличная от нуля касательная составляющая напряженности электрического поля. При определении поля в диэлектрике, окружающем проводники с постоянными токами, это в большинстве случаев несущественно, так как касательная составляющая вектора пренебрежимо мала по сравнению с нормальной составляющей.
Это позволяет в большинстве практически интересных случаев при вычислении поля в диэлектрике, окружающем проводники с постоянными токами, пренебречь касательной составляющей, т. е. считать, что граничные условия являются такими же, как в электростатике, и для определения поля использовать решения соответствующих электростатических задач.
Электрическое поле в проводящей среде
Если в рассматриваемой области отсутствуют сторонние эдс, то электрическое поле постоянного тока в проводящей среде описывается следующей системой дифференциальных уравнений
. (7.7.2)
Соответствующие интегральные соотношения имеют вид
. (7.7.3)
Второе уравнение
системы (7.7.3) является следствием закона
сохранения заряда, так как в случае
стационарного электромагнитного поля
.
Из этого уравнения следует, что на
границе раздела двух сред с различными
удельными проводимостями нормальная
составляющая вектора
является непрерывной:
, (7.7.4)
а касательные составляющие вектора связаны соотношением
. (7.7.5)
В ряде практически важных случаев требуется найти токи, которые возникают в среде, изолирующей проводники друг от друга (токи утечки). Удельная проводимость изоляции во много раз меньше удельной проводимости металла. Поэтому вектор плотности тока утечки можно считать перпендикулярным к поверхности проводников.
Действительно,
пусть угол между вектором
и нормалью к поверхности раздела в
первой среде (в изоляции) равен
,
а второй (в металле) —
.
Из ф-л (7.7.4) и (7.7.5) получается следующее
соотношение между углами
и
:
. (7.7.6)
Так как отношение
очень мало (например, для кабельной
бумаги и меди оно примерно равно
),
угол
можно считать равным нулю при любом
угле
.
