
- •Учебно – методические материалы по физике Составитель: старший преподаватель межфакультетской кафедры гуманитарных и естественнонаучных дисциплин Смирнова л.А.
- •1. Общие требования к оформлению
- •2. Практическая работа № 1
- •2.1. Методические указания
- •2.2. Основные законы и формулы. Примеры решения задач
- •2.2.1. Кинематика поступательного и вращательного движения
- •Примеры решения задач
- •2.2.2. Динамика. Законы Ньютона
- •Примеры решения задач
- •2.2.3. Работа постоянной и переменной силы. Закон сохранения механической энергии
- •Примеры решения задач
- •Задача 3
- •2.2.4. Закон сохранения импульса. Совместное применение законов сохранения импульса и механической энергии
- •Примеры решения задач
- •2.2.5. Динамика вращательного движения твёрдого тела
- •Примеры решения задач
- •2.2.6. Закон сохранения момента импульса. Кинетическая энергия вращающегося тела
- •Примеры решения задач
- •2.2.7. Элементы специальной теории относительности
- •Примеры решения задач
- •2.3. Задачи «Практическая работа № 1»
- •3. Практическая работа № 2
- •3.1. Методические указания к выполнению практической работы № 2
- •3.2. Основные законы и формулы. Примеры решения задач
- •3.2.1. Идеальный газ. Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)
- •Примеры решения задач
- •3.2.2. Основное уравнение молекулярно-кинетической теории газов. Внутренняя энергия идеального газа
- •Примеры решения задач
- •3.2.3. Элементы классической статистики
- •Примеры решения задач
- •3.2.4. Первое начало термодинамики. Теплоёмкость идеального газа
- •Примеры решения задач
- •Работа газа, нагреваемого при постоянном объеме, равна нулю
- •3.2.5. Круговые процессы. Кпд цикла. Цикл Карно
- •Примеры решения задач
- •3.2.6. Энтропия
- •Примеры решения задач
- •3.3. Задачи «Практическая работа №2»
- •4. Практическая работа № 3
- •4.1. Методические указания к выполнению к практической работы № 3
- •4.2. Основные законы и формулы. Примеры решения задач
- •4.2.1.Электростатика
- •Примеры решения задач
- •Таким образом,
- •Произведя вычисления, получим:
- •4.2.2. Постоянный электрический ток
- •Примеры решения задач
- •Откуда получаем
- •4.2.3. Магнитостатика
- •Примеры решения задач
- •Из рис. 6 следует, что
- •4.2.4. Электромагнитная индукция
- •Примеры решения задач
- •Максимальное значение эдс индукции равно
- •Учитывая формулу (2), получим:
- •Энергия магнитного поля соленоида
- •4.3. Задачи «Практическая работа № 3»
- •5. Практическая работа № 4
- •5.1. Методические указания к выполнению практической работы № 4
- •5.2. Основные законы и формулы. Примеры решения задач
- •5.2.1. Гармонические механические колебания
- •Примеры решения задач
- •5.2.2. Затухающие колебания
- •Примеры решения задач
- •5.2.3. Электромагнтные колебания
- •Примеры решения задач
- •5.2.4. Сложение гармонических колебаний
- •Примеры решения задач
- •5.2.5. Упругие и электромагнитные волны
- •Примеры решения задач
- •5.2.6. Интерференция света
- •Примеры решения задач
- •5.2.7. Дифракция света
- •Примеры решения задач
- •5.2.8. Поляризация света
- •Примеры решения задач
- •5.3. Задачи «Практическая работа № 4»
- •6. Практическая работа № 5
- •6.1. Методические указания к выполнению практической работы № 5
- •6.2. Основные законы и формулы. Примеры решения задач
- •6.2.1. Тепловое излучение
- •Примеры решения задач
- •6.2.2. Фотоэффект
- •6.2.3. Физика атома. Спектры атомов
- •Примеры решения задач
- •6.2.4. Элементы квантовой механики
- •Примеры решения задач
- •6.2.5.Физика твердого тела
- •Примеры решения задач
- •6.2.6. Физика атомного ядра. Радиоактивность
- •Примеры решения задач
- •6.3. Задачи «Практическая работа № 5»
- •Приложения
- •2. Некоторые астрономические величины (округленные значения)
- •3. Относительные атомные массы некоторых элементов
- •4. Масса, заряд и энергия покоя некоторых частиц
- •5. Относительная диэлектрическая проницаемость
- •6. Удельное сопротивление металлов
- •7. Показатели преломления
- •8. Работа выхода электрона из металла
- •9. Электрические характеристики некоторых полупроводников (температура комнатная)
- •10. Характеристики некоторых радиоактивных изотопов
- •11. Массы атомов некоторых химических элементов
- •12. Некоторые соотношения между единицами измерения физических величин
- •12. Множители и приставки для образования десятичных кратных и дольных единиц и их наименования
- •13. Греческий алфавит
Примеры решения задач
Задача 1
Электрон, начальной скоростью которого можно пренебречь, прошел ускоряющую разность потенциалов U. Найти длину волны де Бройля для двух случаев: 1) U1 = 51 B; 2) U2 = 510 кВ.
Дано: |
Решение: |
U1 = 51 B U2
= 510 кВ =
|
Длина волны де Бройля для частицы зависит от ее импульса р и определяется формулой
где h – постоянная Планка. |
|
Импульс частицы можно определить, если известна ее кинетическая энергия Ек. Связь импульса с кинетической энергией различна для нерелятивистского случая (когда кинетическая энергия частицы много меньше энергии ее покоя) и для релятивистского случая (когда кинетическая энергия сравнима с энергией покоя частицы):
- в нерелятивистском случае
,
(2)
- в релятивистском случае
, (3)
где
– энергия покоя частицы.
Формула (1) с учетом соотношений (2) и (3) запишется:
- в нерелятивистском случае
,
(4)
- в релятивистском случае
.
(5)
Сравним кинетические энергии электрона, прошедшего заданные в условии задачи разности потенциалов U1 = 51 В и U2 = 510 кВ, с энергией покоя электрона и, в зависимости от этого, решим, которую из формул – (4) или – (5) следует применить для вычисления длины волны де Бройля.
Как известно, кинетическая энергия электрона, прошедшего ускоряющую разность потенциалов U, равна
Eк = eU.
В первом случае
Ек
= eU1
= 51 эВ =
10-4
МэВ, что много меньше энергии покоя
электрона, равной
МэВ.
Следовательно, в этом случае можно применить формулу (4). Для упрощения расчетов заметим, что Ек = 10-4 m0c2. Подставив это выражение в формулу (4), перепишем ее в виде
.
Учитывая,
что h/moc
есть комптоновская длина волны
,
получим:
.
Так как = 2,43 пм, то
пм
= 171 пм.
Во втором случае кинетическая энергия
Eк = eU2 = 510 кэВ = 0,51 МэВ,
т.е. равна энергии покоя электрона. В этом случае необходимо применить релятивистскую формулу (5). Учитывая, что Ек = 0,51 МэВ = moc2, по формуле (5) найдем
,
или
.
Подставив значение и произведя вычисления, получим:
пм
= 1,40 пм.
Задача 2
Кинетическая энергия электрона в атоме водорода составляет величину порядка 10 эВ. Используя соотношение неопределенностей, оценить минимальные размеры атома.
Дано: |
Решение: |
Ек = 10 эВ |
Соотношение
неопределенностей для координаты и
импульса
|
lmin - ? |
координаты частицы (в данном случае электрона); ħ = h/2 – приведенная постоянная Планка h.
Из соотношения неопределенностей следует, что чем точнее определяется положение частицы в пространстве, тем более неопределенным становится импульс, а следовательно, и энергия частицы. Пусть атом имеет линейные размеры l, тогда электрон атома будет находиться где-то в пределах области с неопределенностью
Δx = l / 2.
Cоотношение неопределенностей можно записать в этом случае в виде
,
откуда
Физически разумная неопределенность импульса Δp, во всяком случае, не должна превышать значение самого импульса p, т. е. Δp ≤ p.
Импульс р связан с кинетической энергией Ек соотношением
р
=
.
Заменим
р
значением
(такая замена не увеличит l).
Перейдем к равенству
.
Подставив числовые значения и произведя вычисления, получим:
lmin
=
м
=
10-10
м = 116 пм.
Задача 3.
Оценить относительную ширину испускаемой
спектральной линии, длина волны которой
составляет 0,6 мкм, при переходе атома
из возбужденного в основное состояние.
Время жизни атома в возбужденном
состоянии оставляет приблизительно
.
Дано: |
Решение: |
∆t= |
Выразим ширину испускаемой спектральной линии через энергию фотона с помощью формулы Планка:
|
|
Частота испускаемого фотона связана с длиной волны соотношением
,
где с – скорость света в вакууме.
Искомая
величина
равна
.
Для нахождения Δε воспользуемся соотношением неопределенностей для энергии и времени ∆ε∆t ≥ ћ/2,
где
– неопределенность энергии;
t
– время жизни атома в возбужденном
энергетическом состоянии.
∆ε = ћ/2∆t.
Подставим ∆ε в искомую величину, получим:
.
Подставим числовые значения и находим
.