
- •В.И. Игонин, д.Ф. Карпов, м.В. Павлов тепловой режим зданий и сооружений
- •Оглавление
- •Глава 1. Теплотехнический расчет наружных ограждений 7
- •Глава 2. Влажностный режим наружных ограждений 29
- •Глава 3. Воздухопроницаемость ограждений здания 48
- •Глава 4. Оценка теплового комфорта в помещении в холодный период
- •Глава 5. Определение суммарной солнечной радиации при действительных
- •Введение
- •Глава 1 теплотехнический расчет наружных ограждений
- •Наружные и внутренние климатические условия
- •Влажностный режим помещений зданий
- •Условия эксплуатации ограждающих конструкций
- •Расчет сопротивления теплопередаче однородной ограждающей конструкции
- •К определению коэффициента n
- •Нормируемый температурный перепад Δtn
- •Коэффициент теплоотдачи αint
- •Коэффициент теплоотдачи αext
- •Расчет сопротивления теплопередаче неоднородной ограждающей конструкции
- •Теплотехнический расчет утепленных полов на грунте
- •Теплотехнический расчет световых проемов и наружных дверей здания
- •Расчетно-практическая работа № 1
- •Вопросы для самоконтроля
- •Глава 2 влажностный режим наружных ограждений
- •Перемещение в ограждении парообразной влаги
- •Расчет нормируемых технических показателей паропроницания
- •Расчет сопротивления паропроницанию ограждающей конструкции (I условие)
- •Относительная влажность внутреннего воздуха φint
- •Средняя месячная и годовая температура наружного воздуха г. Вологды
- •Расчет сопротивления паропроницанию ограждающей конструкции (II условие)
- •Предельно допустимые значения коэффициента wav
- •Расчет распределения парциального давления водяного пара
- •Расчетно-практическая работа № 2
- •Исходные данные для теплотехнического расчета
- •Исходные данные для построения графика (рис. 6)
- •Сопротивление паропроницанию слоев наружной стены
- •Исходные данные для построения графика (рис. 7)
- •Вопросы для самоконтроля
- •Глава 3 воздухопроницаемость ограждений здания
- •Расчет сопротивления воздухопроницанию наружных стен
- •Нормируемая воздухопроницаемость ограждающих конструкций
- •Расчет сопротивления воздухопроницанию окон
- •Расчет температуры поверхности и теплопередачи через ограждения при наличии воздухопроницаемости
- •Расчетно-практическая работа №3
- •Исходные данные для расчета воздушного режима здания
- •Вопросы для самоконтроля
- •Глава 4 оценка теплового комфорта в помещении в холодный период года
- •Условия комфортности рабочего в помещении
- •Расчет коэффициентов облученности конструкций помещения
- •Расчет коэффициентов облученности элементарной площадки на голове человека
- •Расчетно-практическая работа №4
- •Вопросы для самоконтроля
- •Глава 5 определение суммарной солнечной радиации при действительных условиях облачности за отопительный период
- •Расчет суммарной солнечной радиации на горизонтальную поверхность здания
- •Расчет суммарной солнечной радиации на вертикальную поверхность здания
- •Расчетно-практическая работа №5
- •Исходные данные для расчета солнечной радиации
- •Расчетные характеристики солнечной радиации на вертикальную и горизонтальную поверхность при действительных условиях облачности для г. Вологды
- •Вопросы для самоконтроля
- •Заключение
- •Библиографический список Основная литература
- •Дополнительная литература
- •Нормируемые значения сопротивления теплопередаче ограждающих конструкций
- •Фактическое приведенное сопротивление окон, балконных дверей и фонарей
- •Значения парциального давления насыщенного водяного пара
- •Значения парциального давления насыщенного водяного пара для температуры над водой
Расчет сопротивления теплопередаче неоднородной ограждающей конструкции
Однородность
слоя материалов, применяемых в современной
практике однослойных и многослойных
строительных ограждений (стен, покрытий,
перекрытий), нарушается теплоизоляционными
или теплопроводными включениями,
воздушными прослойками. Расчет
приведенного термического сопротивления
,
,
производится следующим образом.
Условно
разрезают плоскостями, параллельными
направлению теплового потока, ограждающую
конструкцию (или часть ее) на участки,
из которых одни могут быть однородными
– из одного материала, а другие
неоднородными – из слоев различных
материалов. Тогда термическое сопротивление
конструкции по данному направлению
,
,
определяется по формуле [7]:
|
(1.6) |
где
- общая площадь конструкции, равная
сумме площадей отдельных участков,
;
и
- соответственно площадь i-го
участка характерной части ограждающей
конструкции,
,
и его приведенное термическое
сопротивление,
;
- число условно разбитых участков
ограждающей конструкции.
Затем ограждающую
конструкцию (или часть ее, взятую для
определения
)
условно разрезают на слои плоскостями,
перпендикулярными направлению теплового
потока. Термическое сопротивление
ограждающей конструкции
,
,
определяется как сумма термических
сопротивлений отдельных однородных и
неоднородных слоев.
Приведенное термическое сопротивление неоднородной ограждающей конструкции , , рассчитывается по формуле:
|
(1.7) |
На рис. 1 в качестве примера представлен элемент плиты покрытия с воздушными прослойками (табл. 1.7), на котором указаны характерные для расчета сечения.
Рис. 1. Элемент плиты покрытия с характерными сечениями
После определения по формуле (1.7) термическое сопротивление теплопередаче , , и коэффициент теплопередачи , , для всей ограждающей конструкции определяются по формулам (1.4) и (1.5) соответственно.
Таблица 1.7
Термическое сопротивление замкнутых воздушных прослоек
Толщина воздушной прослойки, м |
Термическое сопротивление замкнутой воздушной прослойки Ra.l, м2·°С/Вт |
|||
горизонтальной при потоке теплоты снизу вверх и вертикальной |
горизонтальной при потоке теплоты сверху вниз |
|||
при температуре воздуха в прослойке |
||||
положительной |
отрицательной |
положительной |
отрицательной |
|
0,01 |
0,13 |
0,15 |
0,14 |
0,15 |
0,02 |
0,14 |
0,15 |
0,15 |
0,19 |
0,03 |
0,14 |
0,16 |
0,16 |
0,21 |
0,05 |
0,14 |
0,17 |
0,17 |
0,22 |
0,1 |
0,15 |
0,18 |
0,18 |
0,23 |
0,15 |
0,15 |
0,18 |
0,19 |
0,24 |
0,20-0,30 |
0,15 |
0,19 |
0,19 |
0,24 |
Примечание: при наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги термическое сопротивление следует увеличивать в два раза. |