Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Для студентов1.doc
Скачиваний:
9
Добавлен:
21.11.2019
Размер:
11.44 Mб
Скачать

Растущая конкуренция на современном мировом рынке товаров и услуг заставляет производителей заботиться о конкурентоспособности своей продукции. Помимо традиционных способов ее повышения: снижение стоимости, повышение качества, надежности и эффективности, расширение функциональных возможностей, все большую актуальность стали приобретать следующие:

  • снижение затрат на эксплуатацию, ремонт и утилизацию;

  • обеспечение простоты и удобства эксплуатации и обслуживания;

  • быстрота реакции на потребности рынка;

  • доступность необходимой документации и простота ее обработки;

  • снижение временных и материальных затрат на обучение персонала по эксплуатации.

Современный уровень развития компьютерной техники, информационных технологий и разработки программного обеспечения (САПР разных предметных областей, АСУ, информационная АСУ (ИАСУ) и т.д.) позволяет компьютеризировать практически любой вид деятельности человека, связанный с обработкой информации. Эти проблемы решались объединением САПР в интегрированные системы за счет физического объединения БД, однако при этом полностью отсутствовала привязка их логических структур, что приводило к таким негативным явлениям, как фрагментация информации, многократное дублирование данных, несовместимость различных представлений об одном и том же изделии, невозможность интеграции разных ИАСУ.

Для решения указанных проблем необходимо проведение работ в следующих направлениях:

  • согласование информационных представлений об изделиях и процессах;

  • организация активного обмена согласованной информацией об изделиях и процессах между деловыми партнерами;

  • исчерпывающий анализ всех факторов, влияющих на конкурентоспособность изделий в современном представлении.

Все эти подходы были объединены в рамках концепции CALS (Continuous Acquisition and Life-cycle Support — непрерывное обеспечение и поддержка жизненного цикла изделий). В России CALS-технологии получили аббревиатуру ИПИ (информационная поддержка жизненного цикла изделий).

Жизненный цикл изделия (ЖЦИ) - перечень этапов, через которые проходит изделие за весь период своего существования. В основном применяется по отношению к сложной наукоемкой продукции высокотехнологичных предприятий в рамках CALS-технологий.

Реализация CALS технологий в практическом плане предполагает организацию единого информационного пространства (Интегрированной информационной среды), объединяющего автоматизированные системы, предназначенные как для эффективного решения задач инженерной деятельности, так и для планирования и управления производством и ресурсами предприятия.

Интегрированная информационная среда представляет собой совокупность распределенных баз данных, в которой действуют единые, стандартные правила хранения, обновления, поиска и передачи информации, через которую осуществляется безбумажное информационное взаимодействие между всеми участниками жизненного цикла изделия. При этом однажды созданная информация хранится в интегрированной информационной среде, не дублируется, не требует каких-либо перекодировок в процессе обмена, сохраняет актуальность и целостность.

Рис. 1. Этапы жизненного цикла промышленной продукции и используемые автоматизированные системы

CAD - Computer Aided Design - компьютерная поддержка конструирования;

САЕ - Computer Aided Engineering - компьютерная поддержка инженерного анализа;

САМ - Computer Aided Manufacturing - компьютерная поддержка изготовления;

PDM - Product Data Management - системы управления проектными данными.

ERP – Enterprise Resources Planning – планирование ресурсов предприятия.

MRP-2 – планирование производства

MES – производственная исполнительная система

SCM – Supply Chain Management – управление цепочками поставок

SCADA – диспетчерское управление производственными процессами.

CNC – компьютерное числовое управление

PLM – Product Lifecycle Management – управление жизненным циклом изделия. CAPP – технологическая подготовка производства

CRM (Customer Requirement Management) - Управление взаимоотношениями с заказчиками

IETM (ИЭТР) – Интерактивные электронные технические руководства

Системы автоматизированного проектирования

Компьютерные технологии уже заметно повлияли на облик современной цивилизации в целом и материального производства в частности. В настоящее время общепризнанным фактом является невозможность проектирования и изготовления сложной наукоемкой продукции (кораблей, самолетов, автомобилей, различных видов промышленного оборудования и др.) без применения компьютеров. Автоматизированные системы не только повышают эффективность, но и значительно изменяют содержательную сторону всех бизнес-процессов машиностроения, оказывая существенное влияние на способы проектирования, технологию и организацию производства.

Многие современные автоматизированные линии и станки с ЧПУ уже нельзя эксплуатировать, опираясь только на традиционные методы и подходы. При использовании цифровых систем управления оборудованием компьютеры и программное обеспечение становятся неотъемлемой частью технологической цепочки на производственном предприятии. Поэтому без создания специальных промышленных автоматизированных систем теряют смысл инвестиции в дорогостоящие средства производства, измеряемые миллионами, а порой и миллиардами рублей. Несмотря на свою относительную молодость и новизну, системы автоматизированного проектирования уже прошли длительный путь совершенствования. Всего за несколько десятилетий они стремительно эволюционировали из утилитарных программ и лабораторных образцов в ведущую отрасль промышленного программного обеспечения и образовали обширное поле деятельности для целого ряда компьютерных наук. Методология разработки, внедрения и интеграции автоматизированных систем, методы моделирования и проектирования, алгоритмы численных расчетов, оптимизация и многие другие компьютерные средства и технологии, реализованные сейчас в математическом, информационном, программном, организационном и других видах обеспечений САПР (системы автоматизированного проектирования), в свое время потребовали выполнения большого объема исследований и экспериментов. Все это нашло свое место и отражение в теоретическом и практическом арсенале САПР как науки.

Развитие и совершенствование систем автоматизированного проектирования, которые активно продолжают культивироваться во всех индустриально развитых странах мира, дают ощутимые результаты. Со стремительным прогрессом компьютерной техники и технологий значительно изменяются в положительную сторону показатели экономической эффективности автоматизированных систем. Многократное удешевление электроники заметно даже на бытовом уровне. Программное обеспечение становится все более мощным и функционально полным без заметного увеличения стоимости, а в ряде случаев и более доступным для пользователей за счет увеличения тиражей и использования промышленных методов разработки.

По своему энциклопедическому определению автоматизированное проектирование является сложным информационным процессом взаимодействия проектировщиков и средств автоматизации. Причем за человеком остаются самые ответственные, интеллектуальные функции, такие как постановка задач и принятие решений, которые не могут быть выполнены с помощью формальных математических методов. Таким образом, все более критичным для прогресса промышленности становятся наличие развитой системы подготовки специалистов по промышленным компьютерным технологиям и уровень их подготовки. В экономически развитых странах в свое время были сделаны серьезные изменения в системе образования с учетом происходящей компьютеризации промышленности. И сейчас практически все учебные заведения технического профиля в США и Западной Европе имеют в своих учебных программах практикумы по основам автоматизированного проектирования. Так, например, мировыми лидерами в области промышленных компьютерных технологий являются ведущий технический университет США — Массачусетский технологический институт (MIT), Колумбийский университет и Университет Пурдью (штат Индиана), университеты Кембриджа и Бирмингема в Великобритании, а также многие другие известные центры образования и науки. В России большое внимание развитию САПР уделяют в МГТУ им. Баумана, в Московском станко-инструментальном техническом университете (СТАНКИН), МАИ, МАТИ, Волгоградском и Брянском технических и Ивановском энергетическом университетах, Уфимском авиационном, Самарских аэрокосмическом (СГАУ) и техническом (СамГТУ) университетах и ряде других ведущих вузов страны.

Многие научные методы и рекомендации по созданию и эксплуатации автоматизированных систем доведены до уровня промышленных стандартов, которые официально приняты на международном и государственном уровнях. Разработка и техническая подготовка производства изделий машиностроения предусматривает выполнение определенной стандартами последовательности взаимосвязанных процессов. К основным процессам принято относить конструкторское и технологическое проектирование (КТПП). Вспомогательными, но не менее необходимыми процессами считают организацию информационной поддержки КТПП (корпоративные справочники, технические архивы, документооборот) и управление бизнес-процессами промышленного предприятия. Современные системы автоматизированного проектирования поддерживают целый комплекс инженерных работ на нескольких ключевых этапах жизненного цикла изделия (ЖЦИ) — в процессах проектирования, конструкторско-технологической подготовки производства и составляют основу интегрированных систем управления ЖЦИ машиностроительного предприятия (PLM-систем).

В настоящее время под термином «машиностроительная САПР» у нас в стране и за рубежом однозначно подразумевается комплексная автоматизированная система, состоящая как минимум из CAD/CAM/CAE/CAPP/PDM- подсистем.

CAD-системы (Computer-Aided Design - компьютерная поддержка конструирования) предназначены, прежде всего, для решения конструкторских задач и автоматизации оформления проектно-конструкторской документации. Современные универсальные CAD-системы позволяют выполнять в интерактивном режиме как 2D, так и ЗD-геометрическое моделирование деталей и сборок, а также разрабатывать на основе геометрических vоделей полный комплект технической документации: чертежи, спецификации, ведомости и т.д. Сюда же относятся и многочисленные проблемно-ориентированные программы и подсистемы, автоматизирующие частные задачи проектирования (моделирование деталей, изготавливаемых из листовых материалов, объемной штамповки, трассировки трубопроводов, расчеты типовых изделий и их элементов - тел вращения, пружин, зубчатых соединений и т.д.).

САМ-системы (Computer-Aided Manufacturing - компьютерная поддержка изготовления) предназначены в основном для проектирования процессов обработки изделий на станках с числовым программным управлением (ЧПУ) и генерации программ для этих станков (фрезерных, сверлильных, токарных, шлифовальных и др.). К САМ-системам логично отнести и другие компоненты САПР, решающие многочисленные проблемно-ориентированные задачи технологической подготовки производства (моделирование и расчет заготовок, подбор оптимальных режимов обработки, вычисление параметров техпроцессов и т.д.).

CAE-системы (Computer-Aided Engineering - компьютерная поддержка инженерного анализа), как правило, реализуют универсальные подходы метода конечных элементов, с помощью которого можно проводить моделирование и численные расчеты практически любых физических полей. К CAE можно отнести обширный класс подсистем, каждая из которых позволяет автоматизировать определенную инженерную задачу (класс однородных задач): от расчетов на прочность, анализа аэро-, гидро-, термодинамических процессов - до моделирования функционирования машин и механизмов, расчетов процессов литья, штамповки и пр.

САРР-системы (Computer-Aided Process Planning (Assembly Planning) - компьютерная поддержка планирования технологических процессов (процессов сборки). Предназначены для проектирования технологических процессов, трудового и материального нормирования и разработки технологической документации. Эти системы совместно с компонентами CAD/САМ/CAE-систем составляют современную основу САПР ТП.

PDM-системы (Product Data Management - управление данными о продукте) предназначены для интеграции и хранения комплексной информационной модели изделия, включая геометрические и инженерно-физические модели, исходные данные и результаты расчетов, чертежи, программы для станков с ЧПУ, другие конструкторские и технологические документы, результаты измерений и контроля, материалы системы качества и т.д.