Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сигналы и Линейные системы. Тематические лекции / ts14-Импульсные параметры кабеля.doc
Скачиваний:
48
Добавлен:
02.05.2014
Размер:
151.04 Кб
Скачать

9

Сигналы и линейные системы

Тема 14: импульсные параметры каротажного кабеля

Когда дело доходит до разбора конкретных случаев, все оказывается сложнее.

Альбер Камю. Физик, ХХ в.

Сложности – дело житейское. Сами создаем, сами преодолеваем. В этом весь смысл исконно российской героики.

Евгений Кучурин. Уральский геофизик, ХХ в.

Содержание: 14.1. Индекс неопределенности кабеля.Принцип неопределенности. Ограничения передачи сигналов.14.2. Оптимальная форма сигналов. 14.3. Кодовые сигналы.Литература.

Введение

Импульсная пропускная способность кабеля, равно как и возникающие при этом искажения передаваемых сигналов, полностью определяются передаточной функцией жил. Однако передаточная функция, как индивидуальная характеристика жилы определенной длины, мало пригодна для сопоставления эффективности различных методов кодирования данных и сравнения различных типов кабелей по скорости передачи данных. Для этих целей желательно иметь нормированную числовую характеристику.

14.1. Индекс неопределенности кабеля [23]

Все дальнейшие вычисления проводятся на кабеле, согласованном с нагрузкой, если отклонения от согласованности специально не оговорены.

Принцип неопределенности. Эффективная длительность произвольного импульсного сигнала (или импульсного отклика линейной системы) и эффективная ширина его спектра (передаточной функции системы) связаны определенным постоянным соотношением. Чем меньше длительность сигнала (отклика), тем больше ширина его спектра. Согласно принципу неопределенности, для любого сигнала и системы должно выполняться соотношение:

T  1/, (14.1.1)

где T – длительность сигнала (или импульсного отклика системы),  - ширина спектра сигнала (полоса пропускания системы), при условии, что мерой эффективной длительности сигнала и эффективной ширины спектра служат вторые моменты функций распределения сигнала и спектра, т.е. средние квадратические отклонения от центра временного распределения сигнала и от центра спектрального распределения (последний, при двустороннем распределении относительно нуля частот, равен нулю). Для произвольной системной функции h(t)  H(), заданной на интервале 0 -  , значения T и определяются по формулам:

(T)2 = 4, (14.1.2)

()2 = 4. (14.1.3)

В таблице 14.1.1 приведены расчетные значения параметров кабеля, вычисленные по вышеприведенным формулам. Полная физическая длительность импульсного отклика в первом приближении должна приниматься равной 2T, а ширина спектра (с учетом отрицательных частот) равной 2. В области реальных (только положительных) частот параметр  может отождествляться с реальной полосой пропускания системы (реальной шириной спектра сигнала).

Таблица 14.1.1. Импульсные параметры кабелей.

Тип кабеля и ТПЖ

ОБК

МБК, жила-броня

МБК, жила-жила

Длина кабеля, км.

3

5

7

3

5

7

3

5

7

Tk отклика, мкс.

19.2

32.9

48.3

14.1

26.1

40.9

8.21

17.4

29.7

k отклика, кГц.

67.6

26.2

15.2

83.6

34.4

19.4

102

40.1

22.1

Индекс Tkk

1.30

0.86

0.73

1.18

0.89

0.79

0.84

0.70

0.66

Ограничения передачи сигналов. В принципе, индекс неопределенности кабеля Tkk, равно как и входящие в него параметры Tк и к, не устанавливают каких-либо жестких ограничений по импульсной пропускной способности кабеля, особенно для импульсных сигналов, так как она существенно зависит как от системы формирования импульсных последовательностей и, соответственно, определенных априорных данных для идентификации сигналов на выходе кабеля, так и от уровня статистических шумов линии передачи сигналов. Однако следует учитывать, что при передаче импульсов с  > к система приводит (в той или иной мере) индекс неопределенности сигналов к собственному индексу неопределенности, а при установленном значении k системы это накладывает ограничения на длительность импульсов. При этом различают полнометрическую, параметрическую и кодовую передачу сигналов.

При полнометрической передаче на выходе кабеля требуется сохранить форму входных сигналов, что, естественно, возможно только с определенной погрешностью и только для сигналов, эффективная ширина спектра которых минимум на порядок ниже ширины спектра передаточной функции кабеля и достаточно быстро затухает. В общем случае, возможность восстановления сигналов на выходе кабеля методами частотной коррекции передаточной функции кабеля, а равно и погрешность восстановления, определяется безвозвратными потерями высокочастотных информационных составляющих сигналов. С учетом этого импульсный сигнал произвольной формы без скачков и угловых изломов может быть восстановлен на выходе кабеля, если эффективная ширина его спектра не превышает эффективной ширины спектра кабеля, а сам сигнал задается на интервале не менее 2Tk с выходом на нулевые значения по его краям и длительность его фронтов не меньше длительности фронта импульсного отклика кабеля (по уровням 0.1 и 0.9 амплитудных значений).

При параметрической передаче сигналов кабель должен обеспечивать линейную передачу определенных параметров сигналов и достаточно точное измерение их значений на выходе кабеля. К ним обычно относятся: амплитудные значения, значения площади (энергии) сигналов или временные интервалы между сигналами. По существу, это частный и достаточно упрощенный вариант полнометрической передачи произвольных сигналов. Без восстановления формы сигналов минимальный временной интервал следования сигналов при определениях амплитуд и площадей (энергии) определяется длительностью спада импульсного отклика кабеля (до требуемых значений остаточной реакции на предыдущий импульс). При использовании систем коррекции (восстановления) сигналов форма и входных, и выходных сигналов (после коррекции) может быть произвольной. При формировании входных сигналов на интервале не менее 2Tk точность измерений может быть не менее 1%.

Идентификация кодовых сигналов гарантирована при любой форме приема сигналов (с коррекцией и без коррекции) и при любой форме входных сигналов, задаваемых на интервале 2Tk. При использовании корректоров сигналов битовый интервал может быть сокращен до Tk, а при априорно известном интервале битовых посылок и жесткой структуре кодовых слов – и еще более.

Как видно из данных, приведенных в таблице 14.1.1, каротажные кабели имеют довольно низкие параметры пропускания импульсных сигналов. Кроме того, все вышеизложенное не учитывает уровня статистических кабельных помех, которые могут значительно усложнить прием сигналов.

Рис. 14.1.1. Форма и спектры однополярных импульсов.

На рис. 14.1.1(А, В) для жил кабеля КГ 3х0.75-60-150 длиной 5 км приведена форма двух типов импульсов, полярных по своим индексам неопределенности, в границах интервала 2Тк кабеля (граница интервала выделена вертикальным пунктиром). Прямоугольный импульс из всех типов простых импульсов имеет наибольший индекс неопределенности. У треугольного сигнала индекс неопределенности только на 10% больше индекса гауссовских сигналов, имеющих предельно возможный минимальный индекс 1/. Эффективная длительность сигналов установлена такой, чтобы при свертке с импульсным откликом жилы амплитуды импульсов на выходе кабеля были примерно равными, что позволяет наглядно сравнить качество передачи данных сигналов по кабелю. На рис. 14.1.1(C) приведены модули спектров сигналов в высокочастотной области в сравнении с модулем передаточной функции жилы. Для наглядности сравнения спектры нормированы по максимальным значениям к 1.

Таблица 14.1.2. Параметры однополярных сигналов на нагрузке кабеля КГ 3х0.75-60-150.

Тактовый интервал

Т=2Tk

Т=Tk

Сигналы

Входные

Выходные

Входные

Выходные

Параметры

П

П

П

П

T импульса, мкс.

15.3

11.2

30.2

29.7

7.8

5.5

27.3

27.1

 импульса, кГц.

326

31.2

16.2

16.6

456

63.6

22.7

23.8

Индекс T

4.98

0.35

0.49

0.49

3.56

0.35

0.62

0.64

Как следует из этих рисунков, оба типа сигналов имеют существенные потери в области частот выше k. Форма сигналов на выходе жил становится практически идентичной. Последнее наглядно показывают импульсные характеристики сигналов, приведенные в таблице 14.1.2. При сокращении интервала задания импульсов до величины Tк импульсные характеристики сигналов практически приводятся к импульсным характеристикам жил кабеля. Отсюда следует, что на предельных частотах передачи сигналов форма входных импульсов значения не имеет. В относительных единицах Tк динамика временных процессов в кабелях различных типов и различной длины также идентична, что позволяет индекс неопределенности T и входящие в него параметры T и  считать основными импульсными числовыми характеристиками систем и использовать их в качестве относительных единиц сравнительного анализа. С учетом этого дальнейший анализ будем проводить, как правило, на один кабель (типа КГ 3х0.75-60-150) длиной 5 км с временными параметрами сигналов в единицах (относительных долях) параметра Tk.

Простейший кодовый сигнал двоичной разрядности, это конечная последовательность однополярных битовых сигналов 0 или 1 с определенной тактовой частотой. В пределе, на одном тактовом периоде сигнал 1 может представлять собой импульс с единичной площадью и с длительностью, много меньшей длительности тактового интервала, т.е. физическое приближение дельта-импульса. Выходным сигналом кабеля в этом случае будет импульсный отклик кабеля. Соответственно, кодовое слово будет представлять собой сумму импульсных откликов на последовательность битовых сигналов.

Рис. 14.1.2. Последовательность импульсных откликов на выходе кабеля (такт 2Тk)

Пример такой выходной последовательности с длительностью тактового интервала, равной 2Тk, кабеля, приведен на рис. 14.1.2. Предельное максимальное смещение нулевой линии последовательности, определяемое асимметрией импульсного отклика, не превышает 1/5 амплитудного значения отклика и является максимально возможным для кабеля при любой последовательности кодовых импульсов и при любой их длительности в пределах тактового интервала. Выход на практически нулевые значения – 3 тактовых интервала после импульса. Сокращение тактового интервала до величины Тk приводит к смещению нулевой линии до 2/3 от амплитуды импульсного отклика и практически исключает возможность идентификации импульсов на выходе кабеля, особенно в присутствии шумов.

Таким образом, при передаче по кабелю двоичных кодовых сигналов без применения на выходе кабеля частотных корректоров максимальная частота гарантированной передачи однополярных сигналов по кабелю соответствует тактовым интервалам, равным удвоенному значению эффективной ширины импульсного отклика кабеля, при этом сигналы с гладкой формой и минимальной шириной спектральной характеристики не имеют преимуществ перед прямоугольными сигналами.