
- •Введение
- •Глава 1. Введение в математический анализ
- •1.1. Логическая и математическая символика
- •1.2. Множества
- •1.3. Функции
- •1.4. Пределы функции на бесконечности
- •Предел последовательности
- •Предел функции при X -
- •1.5. Предел функции в точке
- •Левосторонний и правосторонний пределы функции в точке
- •1.6. Бесконечно-малые функции и их свойства
- •1.7. Бесконечно большие функции, их свойства и связь с бесконечно малыми функциями
- •1.8. Основные теоремы о пределах
- •1.9. Первый замечательный предел
- •1.10. Второй замечательный предел
- •1.11. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции
- •1.12. Непрерывность функции в точке. Точки разрыва
- •1.13. Свойства функций, непрерывных на отрезке
- •Глава 1. Введение в математический анализ 4
- •4. Если не существует (ни конечный, ни бесконечный), то (X), (X) называют несравнимыми б.М. При X a. 23
- •4. Всякая рациональная дробь, являющаяся отношением двух многочленов , непрерывна во всех точках, в которых многочлен q(X) не обращается в 0. 26
1.2. Множества
Понятие множества является первоначальным понятием математики, точное определение ему не дается, но его можно пояснить, описать через другие понятия. Можно сказать, что множество – это совокупность, собрание каких-то объектов, предметов, при этом объект, входящий в это множество, называют его элементом. Множества могут содержать как конечное число элементов, так и бесконечно много элементов. Рассматривают и множество, не содержащее элементов, его называют пустым и обозначают символом .
В математическом анализе чаще всего рассматриваются числовые множества, за некоторыми из них закреплены специальные обозначения. Так, множество всех натуральных чисел обозначаются через N и записывают так: N = {1,2,3,...}. Далее, через Z обозначают множество всех целых чисел, содержащее как натуральные числа, так и 0, и целые отрицательные числа; Z = {..., –3, –2, –1, 0, 1, 2, 3, ...}.
Рациональным
называется число, которое можно
представить в виде отношения двух целых
чисел:
(pZ,
qZ,
q0).
Множество всех рациональных чисел
обозначается через Q.
Символически определение множества
рациональных чисел можно записать так:
Q
{
| pZ
& qZ
& q0}.
Здесь знак
заменяет слово «называется». Заметим,
что множество можно задать перечислением
элементов, а можно описанием свойств
элементов (предикатом), как в последнем
случае.
Известно, что любое рациональное число можно представить десятичной дробью, конечной и бесконечной периодической. Например, рациональное число 5/6 представимо бесконечной периодической дробью 5/6 = 0,83333..., а число 3/8 = 0,375. В последнем случае можно считать десятичную дробь тоже бесконечной с числом 0 в периоде: 3/8 = 0,3750000... . Известно, что всякую периодическую бесконечную дробь можно обратить в обыкновенную дробь p/q.
Иррациональным числом называется всякая бесконечная непериодическая десятичная дробь. Множество всех рациональных и иррациональных чисел называется множеством действительных чисел и обозначается через R. Иными словами, множество действительных чисел R – это множество всех бесконечных десятичных дробей.
Пусть M1, M2 – некоторые множества. Если каждый элемент множества M1 является элементом множества M2, то говорят, что M1 есть подмножество множества M2 и обозначается M1 M2. Итак, M1 M2 тогда и только тогда, когда x(xM1 xM2).
Из определения числовых множеств можно заключить, что NZ, ZQ, QR. Множество действительных чисел является подмножеством множества C всех комплексных (о которых мы сейчас говорить не будем), т.е. RC.
Часто
рассматриваются подмножества
действительных чисел (a,
b), [a,
b], [a,
b), (a,
b] называемые,
соответственно, интервалом,
отрезком, полуинтервалом.
Дадим символические определения этих
множеств, а слово «называется» заменим
на знак
:
(a, b) {xR| a < x < b}; [a, b] {xR| a x b};
(a, b] {xR| a < x b}; [a, b) {xR| a x < b }.
Заметим, что на числовой оси каждое действительное число изображается определенной точкой и любая точка числовой оси задает некоторое число, поэтому [a, b] изображается множеством всех точек отрезка, вместе с концами a, b, в то время как (a, b) – множеством точек отрезка без концов a, b.
Объединение AB, пересечение AB
Рассмотрим операции множеств A, B давая им символические определения:
AB {x| xA xB}, AB {x| xA & xB}
Иногда
рассматривается операция разности
множеств A
и B,
это множество элементов
A,
не входящие в B.
Обозначение: A\B.
Таким образом, A
\ B
{x|
}.
В частном случае R
\ Q есть
множество иррациональных чисел.