
- •Введение в естествознание
- •1. Понятие науки и культуры
- •2. Структура естественнонаучного познания
- •Периоды развития естествознания накопление рациональных знаний в системе первобытного сознания
- •Наука в цивилизациях древнего востока
- •2. Возникновение науки
- •3. Пифагорейский союз
- •4. Формирование первых естественнонаучных программ
- •5.Атомистическая программа
- •6. Математическая программа
- •7. Учение Аристотеля
- •8. Естествознание эллинистически-римского периода
- •9. Развитие астрономии
- •10.Геоцентрическая система Птолемея
- •11. Античные воззрения на органический мир
- •12. Упадок античной науки
- •Естествознание в эпоху средневековья
- •1. Особенности средневековой духовной культуры
- •2. Естественнонаучные достижения средневековой арабской культуры
- •3.Становление науки в средневековой Европе
- •4.Физические идеи Средневековья
- •5. Алхимия как феномен средневековой культуры
- •7.Религиозная трактовка происхождения человека
- •Познание природы в эпоху возрождения
- •1.Мировоззренческая революция Возрождения
- •2.Зарождение научной биологии
- •3.Коперниканская революция
- •Возникновение классической механики
- •1.Особенности познавательной деятельности в 17 веке
- •2.Три закона планетарных движений
- •3.Формирование предпосылок классической механики
- •4.Ньютонианская революция
- •5. Изучение магнитных и электрических явлений
- •Естествознание 18 - первой половины 19 века
- •1. Характеристика развития физики
- •2.Развитие астрономической картины мира
- •3.Возникновение и развитие научной химии
- •4.Развитие биологии
- •Естествознание ιι половины χιχ века: на пути к научной революции
- •1.Развитие физики
- •2. Астрономические знания
- •3. Биологические знания
- •Словарь
- •Тематический план
- •Поурочное планирование
- •Тема 1. Современная физическая картина мира
- •Тема 2. Современная астрономическая картина мира
- •Тема 3. Современная биологическая картина мира
- •Тема 4. Мир живого
- •Тема 5. Теория самоорганизации
- •Тема 6. Естествознание и будущее цивилизации
- •Тема 7. Наука и квазинаучные формы
- •Современная физическая картина мира
- •1.Создание специальной теории относительности
- •2. Возникновение и развитие квантовой физики
- •3. Квантовая механика — теоретическая основа современной химии
- •4. Методологические установки неклассической физики
- •5. Фундаментальные физические взаимодействия
- •6. Классификация элементарных частиц
- •7. Теории элементарных частиц
- •Современная астрономическая картина мира
- •1.Солнечная система
- •2.Общая характеристика звезд
- •3.Галактики
- •4.Вселенная в целом
- •5.Жизнь и разум во Вселенной: проблема внеземных цивилизаций
- •Методологические установки «неклассической» астрономии XX в.
- •Биологическая картина мира
- •1. Рождение генетики как науки
- •2. Хромосомная теория наследственности.
- •3. Синтетическая теория эволюции
- •4.Микроэволюция и макроэволюция
- •5. Мир живого
- •Основные уровни организации живого
- •6. Возникновение жизни на Земле
- •7. Развитие органического мира
- •Возникновение человека и общества
- •1. Естествознание XVII о происхождении человека
- •2.Учение Дарвина как основа материалистической теории антропогенез.
- •Родословная человека Насекомоядные млекопитающие
- •Шимпанзе Горилла Австралопитеки Гиббон Орангутанг
- •3.Возникновение труда
- •4.Становление социальных отношений
- •5. Генезис сознания и языка
- •Особености постнекласической науки ххі в.
- •Теория самоорганизации (синергетика)
- •1.Понятие самоорганизующихся систем
- •2. Закономерности самоорганизации
- •3. Глобальный эволюционизм
- •Естествознание и будущее цивилизации
- •1. Экологический кризис и пути его разрешения
- •3. Основные черты современного экологического кризиса
- •4. Принципы и пути преодоления экологического кризиса
- •5. Биотехнологии и будущее человечества
4.Ньютонианская революция
Результаты естествознания 17 века обобщил Исаак Ньютон. Он отказался от поисков «конечных причин» явлений и законов и ограничился изучением точных количественных проявлений этих закономерностей в природе, став родоначальником классической теоретической физики. Разработал её методы и программу развития. В основе метода лежит экспериментальное установление количественных закономерных связей между явлениями и выведение из них общих законов природы методом индукции. Среди его открытий: законы динамики закон всемирного тяготения, создание новых математических методов (с Лейбницем) – дифференциальное и интегральное исчисление, изобретение телескопа-рефлектора, открытие спектрального состава белого света и др.
Создание теории тяготения. Идея всемирного тяготения и его родства с силой тяжести на Земле возникает в 1666 году. Доказательство тождества проводит на основе вычисления центростремительного ускорения Луны в её обращении вокруг Земли; уменьшив это ускорение пропорционально квадрату расстояния Луны от Земли, он установил, что оно равно ускорению силы тяжести у земной поверхности. Обобщив результаты, сделал вывод, что для всех планет характерно притяжение к Солнцу и тяготеют друг другу с силой, обратно пропорциональной квадрату расстояния между ними. Выдвинул тезис, что сила тяжести пропорциональна количеству материи (массе) и не зависит от формы материала и других свойств тела. После чего сформулировал закон всемирного тяготения.
m m
F =G r
В закон всемирного тяготения не входит время и сила тяготения определяется только положением частиц в данный момент времени, исходя из того, что гравитационное взаимодействие распространяется мгновенно.
В 1686 году была представлена новая теория – механика земных и небесных процессов. Законы движения небесных тел предстали как следствия закона всемирного тяготения. Из этого закона Ньютон вывел следствия, уточнив при этом законы Кеплера, и показал, что движение тел Солнечной системы может происходить по любому коническому сечению (включая параболу и гиперболу). Сделал вывод о единстве законов движения комет и планет, включив кометы в состав Солнечной системы; дал математический метод вычисления истинной орбиты комет (Галей открыл первую периодическую комету); четко объяснил приливы и отливы, сжатие планет (тогда у Юпитера), сделал вывод о сплюснутой у полюсов форме Земли.
В настоящее время с помощью этой теории описывается движение естественных и искусственных тел в Солнечной системе, в звездных системах, галактиках, определяются массы тел, и др.
Корпускулярная теория света
Начало научной оптики связано с открытием законов отражения и преломления света в начале 17 века (Снеллиус и Декарт), но оставалась трудность в объяснении цветов. Поэтому великим достижением Ньютона стало открытие в 1666 году того, что белый свет состоит из света различных цветов, следовательно, цветной свет имеет более простую природу, чем белый. После этого открытия приступил к исследованиям преломления монохроматических лучей и изобрел в 1668 году отражательный зеркальный телескоп – рефлектор. В 1672 построил первый в мире рефлектор – труба 15 см и объектив диаметром 2,5 см (наблюдал спутники Юпитера).
В 1672 году изложил новую корпускулярную концепцию света, в соответствии с которой свет представляет собой поток «световых частиц», наделенных изначальными неизменными свойствами и взаимодействующих с телами. Корпускулы распространяются в эфире и взаимодействуют с ним, сгущая или разряжая его. Цвет – это не результат преломления или отражения света в среде. Цвет присущ свету изначально и связан со свойствами корпускул. Эта теория объясняла абберацию (изменение направления светового луча от небесного светила, вследствие конечности скорости света и движения наблюдателя относительно светила = вызывает смещение видимого положения светила) и дисперсию (зависимость показания преломления вещества от частоты – длины волны – света). При этом плохо объясняла интерференцию (сложение в пространстве нескольких волн, при котором амплитуда результирующей волны в разных точках резко увел, или умен.), дифракцию (отклонение распространения волн от прямолинейного распространения при взаимодействии с препятствием) и поляризацию света.
На основе волновой теории света (свет - это волновое движение в эфире) Гюйгенс вывел законы отражения и преломления света, объяснил двойное лучепреломление в кристаллах.
В 17 веке обсуждался вопрос о том, конечна или бесконечна скорость света, но для эмпирического ответа на этот вопрос не было достаточных данных. В 1676 году Рёмер, на основе наблюдений затмения одного из спутников Юпитера, сделал вывод, что скорость света в пустом пространстве конечна и равна 300 000 км/с.
Космология Ньютона
Распространив закон тяготения на всю Вселенную, Ньютон рассмотрел главную космологическую проблему: конечна или бесконечна Вселенная. Он пришел к выводу, что лишь бесконечности и статичности Вселенной материя может существовать в виде множества космических объектов – центров гравитации. В конечной Вселенной материальные тела рано или поздно слились бы в единое тело в центре мира. Образ Вселенной как безграничного и бесконечного вместилища тел – бездны - существовал вплоть до начала 20 века, до создания общей теории относительности.
Ньютон задумывался и над проблемой происхождения упорядоченной Вселенной. Он осознал, что одних лишь механических свойств материи недостаточно. Полагал, что из одних неупорядоченных механических движений частиц не могла возникнуть вся сложная организация мира. Ньютон считал, что материя сама по себе косна, пассивна и не способна к движению, поэтому тайной оставалось начало орбитального движения планет. Для раскрытия этой тайны оставалось прибегнуть к некой более могучей, чем тяготение, силе - к Богу, и Ньютон допустил, что был божественный «первый толчок», благодаря которому планеты приобрели орбитальное движение, а не упали на Солнце.
Прошло полвека, пока в естествознании сформировалась идея естественной эволюции материи, которая принадлежит И. Канту.