
- •Общая электротехника и электроника учебно-методический комплекс
- •Методические указания к выполнению лабораторных работ
- •Направления подготовки бакалавров
- •I. Лабораторные работы на основе физических моделей общие указания
- •Охрана труда и техника безопасности
- •Рекомендации по выполнению лабораторных работ и оформлению отчета
- •Краткие сведения о применяемых в лаборатории электроизмерительных приборах и устройствах
- •Основные характеристики измерительных приборов
- •Работа 1. Исследование сложной электрической цепи постоянного тока
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 2. Исследование линейных элементов электрических цепей
- •1. Цель работы
- •2. Основные теоретические положения
- •Фазовые соотношения между током и напряжением цепи
- •Амплитудные соотношения между током и напряжением цепи
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 3. Исследование разветвленной цепи синусоидального тока с одним источником энергии
- •1. Цель работы
- •2. Основные теоретические положения
- •Расчет исследуемой цепи
- •Порядок расчета цепи с последовательно-параллельным соединением комплексных сопротивлений (рис. 3.1, а)
- •Порядок расчета цепи с параллельно-последовательным соединением комплексных сопротивлений (рис. 3.1, б)
- •Описание элементов исследуемой цепи
- •Экспериментальное исследование параметров цепи
- •Указания к построению векторных диаграмм
- •Указания к записи токов и напряжений в виде комплексных чисел
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 4. Исследование частотных свойств цепи с последовательным соединением активного сопротивления, индуктивности и емкости
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 5. Исследование трехфазной, соединенных по схеме «звезда»
- •1. Цель работы
- •2. Основные теоретические положения
- •Симметричный режим работы цепи при отсутствии нейтрального провода
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 6. Исследование полупроводниковых диодов
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •1. Цель работы
- •2. Основные теоретические положения
- •Цепь rl при включении ее на постоянное напряжение u (поз. 1, табл. 7.1)
- •Цепь rl при отключении ее от постоянного напряжения u с одновременным замыканием накоротко (поз. 2, табл. 7. 1)
- •Цепь rс при отключении ее от постоянного напряжения u с одновременным замыканием накоротко (поз. 4, табл. 7.1)
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •1. Цель работы
- •Апериодический переходный процесс
- •Колебательный переходный процесс
- •Расчет сопротивления Rк и индуктивности l катушки по осциллограмме тока колебательного процесса
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 9. Исследование явления феррорезонанса напряжений
- •1. Цель работы
- •2. Основные теоретические положения
- •Расчет вах феррорезонансной цепи
- •Анализ явления феррорезонанса
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •II. Лабораторные работы на основе компьютерного моделирования (виртуальные лабораторные работы) общие указания
- •Работа 1 (в). Исследование сложной электрической цепи постоянного тока
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 2 (в). Исследование линейных элементов электрических цепей
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 3 (в). Исследование разветвленной цепи синусоидального тока с одним источником энергии
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 4 (в). Исследование частотных свойств цепи с последовательным соединением активного сопротивления, индуктивности и емкости
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Работа 5 (в). Исследование трехфазных цепей, соединенных по схеме «звезда»
- •Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Cодержание отчета
- •5. Вопросы для самопроверки
- •Работа 6 (в). Исследование полупроводниковых диодов
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •1. Цель работы
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Методика применения программы Multisim для выполнения лабораторных работ общие положения
- •1. Назначение и состав программы Multisim
- •2. Открытие программы, ее составляющие и сборка схемы
- •Сборка схемы
- •3. Виртуальные измерительные приборы
- •Управление масштабом времени
- •Управление каналами а и в
- •Управление синхронизацией
- •III. Методические указания к выполнению лабораторных работ для студентов, занимающихся с элементами дот общие указания
- •Работа 10(д). Исследование линейных элементов
- •1. Цель работы
- •2. Основные теоретические положения
- •Фазовые соотношения между током и напряжением цепи
- •Амплитудные соотношения между током и напряжением цепи
- •3. Порядок выполнения работы
- •Виртуальные измерительные приборы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •Исследование линейных элементов
- •Работа 2. Исследование переходных процессов в цепи с последовательным соединением активного сопротивления, катушки индуктивности и конденсатора
- •1. Цель работы
- •Апериодический переходный процесс
- •Колебательный переходный процесс
- •Расчет сопротивления r и индуктивности l по осциллограмме тока колебательного процесса
- •3. Описание лабораторной установки
- •4. Порядок выполнения работы
- •5. Содержание отчета
- •6. Вопросы для самопроверки
- •Исследование переходных процессов в цепи с последовательным соединением активного сопротивления, катушки индуктивности и конденсатора
- •Библиографический список
- •Содержание Виноградов Александр Леонидович Общая электротехника и электроника
- •Северо - Западный государственный заочный технический университет
- •191186, Санкт-Петербург, ул. Миллионная, д. 5
Фазовые соотношения между током и напряжением цепи
Если ток и напряжение одновременно достигают нуля, то это означает, что они совпадают по фазе (рис. 1.1). При этом . Если этого нет, то напряжение и ток сдвинуты по фазе. Угол сдвига фаз между напряжением и током принято определять как разность начальных фаз напряжения ( ) и тока ( ). Этот угол обозначают греческой буквой j (фи):
. (1.3)
Угол сдвига фаз j любой электрической цепи не произвольная величина. Он определяется соотношением между параметрами R, L и C для каждой конкретной цепи с постоянной частотой f.
В частности, в цепи с сопротивлением R ток и напряжение всегда совпадают по фазе ( ) и угол сдвига фаз, см. формулу (1.3), j = 0; в цепи с индуктивностью L ток всегда отстает по фазе от напряжения на 90° ( ) и поэтому угол сдвига фаз ; в цепи с емкостью C ток всегда опережает напряжение по фазе на 90° ( ) и поэтому угол сдвига фаз .
В цепи, содержащей только элементы R, L, угол сдвига фаз 0 <j < 90; в цепи, содержащей только элементы R, L, C, угол сдвига фаз – 90 <j < 0; в цепи, содержащей только элементы R, C, угол сдвига фаз – 90 <j < + 90.
Следует отметить, что угол j существенно влияет на энергетические процессы в цепи.
Амплитудные соотношения между током и напряжением цепи
Синусоидальные напряжения и токи можно изобразить в виде векторов, длина которых равна амплитуде или действующему значению, а угол между вектором и произвольно выбранной осью отсчета равен начальной фазе. При этом принято положительные начальные фазы откладывать от оси отсчета против часовой стрелки, а отрицательные начальные фазы - по часовой стрелке.
Совокупность векторов тока и напряжений цепи называется векторной диаграммой этой цепи. Векторные диаграммы для цепей с R, L и C показаны на рис.1.1, 1.2 и 1.3.
Энергия
синусоидального напряжения также, как
и энергия постоянного напряжения в
резистивном элементе преобразуется в
тепло, которое рассевается в окружающую
среду. При этом известно, если значение
постоянного напряжения равно
,
то количество теплоты, выделяемое на
сопротивлении при постоянном и
синусоидальном напряжении, будет
одинаково. Величина синусоидального,
равная
,
называется действующим значением и
обозначается U.
Следует
отметить, что практически все приборы,
измеряющие синусоидальные ток и
напряжение (амперметры и вольтметры),
указывают действующее значение:
; . (1.4)
Между амплитудами напряжения и тока (так же, как и между их действующими значениями) любой электрической цепи существует однозначная связь, определяемая соотношениями между параметрами R, L и C. Отношение амплитуд (или действующих значений) напряжения и тока называется полным сопротивлением цепи: .
В частности:
для цепи с активным сопротивлением:
;
для цепи с индуктивностью:
; (1.5)
для цепи с емкостью:
,
где xL - индуктивное, а xC - емкостное сопротивления.
Индуктивное и емкостное сопротивления принципиально зависят от частоты напряжения:
; , ω = 2πf . (1.6)
Активная мощность, которая характеризует непрерывное потребление электроэнергии и превращение ее в полезную работу (нагрев, создание вращающего момента на валу двигателя), равна
Р = UI cosj , (1.7)
где U и I – действующие значения тока и напряжения, j - угол сдвига фаз между напряжением и током.
Для исследования линейных элементов электрических цепей была разработана виртуальная лабораторная работа на основе компьютерной программы Multisim 10.
Ниже приводится описание виртуальных измерительных приборов и даны виртуальные схемы, в которые установлены эти приборы с показаниями (тока, напряжения). На экране виртуального осциллографа отражены мгновенные значения тока и напряжения. Порядок выполнения работы будет указан ниже в разделе «Порядок выполнения работы».