Поршневые компрессоры
.DOCПОРШНЕВЫЕ КОМПРЕССОРЫ
Одноступенчатый компрессор. Поршневые компрессоры применяются для сжатия газов. При подготовке к данной лабораторной работе необходимо усвоить принцип действия поршневого компрессора, который основан на изменении объема рабочей полости цилиндра за счет перемещения поршня. При движении поршня 2 слева направо происходит всасывание газа при открытом всасывающем клапане 4 и заполнение им цилиндра 1 (рис. 1). Всасывание изображено на теоретической индикаторной диаграмме (рис. 2) линией 4–1. При обратном движении поршня всасывающий клапан закрывается и происходит сжатие газа до требуемого давления Р2 (процесс 1–2). Как только давление в цилиндре достигнет величины Р2, откроется нагнетательный клапан 5 (рис.1) и газ начнет выталкиваться поршнем в газосборник (процесс 2–3, рис.2). При достижении поршнем крайнего левого положения в реальном компрессоре сначала происходит расширение газа, оставшегося в зазоре между поршнем и крышкой цилиндра (вредном пространстве V0), до давления во всасывающей магистрали P1 (процесс 3–4). Лишь после этого откроется всасывающий клапан и начнется наполнение цилиндра новой порцией газа (процесс 4–1). В результате часть рабочего объема не заполнится свежей порцией газа и действительный объём всасывания Vвс уменьшится в сравнении с рабочим объёмом Vраб.
Отношение объема всасывания Vвс к рабочему объему Vраб представляет собой объемный коэффициент полезного действия компрессора:
, (1)
по величине которого оценивается подача сжатого газа потребителю (производительность компрессора). Обратите внимание на то (см.[1–3]), что объемный КПД уменьшается с увеличением вредного пространства и повышением давления сжатия.
Следует помнить, что работа lk, затрачиваемая на привод компрессора, численно равна площади, ограниченной контуром индикаторной диаграммы. На рис. 2 это площадь, ограниченная контуром 1234l (заштрихованная площадь). Эта работа зависит от характера процесса сжатия, которая может протекать различными путями в зависимости от интенсивности отвода теплоты от сжимаемого газа. На рис. 2 изображены изотермический 1–2′ (n=1), адиабатный 1–2′′ (n=к) и политропный 1–2 (к>n>1) процессы сжатия. Обратите внимание на то, что сжатие по изотерме требует наименьших затрат работы, т. е. является энергетически наиболее выгодным. Чтобы приблизить процесс сжатия в компрессоре к изотермическому, необходимо интенсивно отводить теплоту от сжимаемого газа. Это достигается за счет охлаждения цилиндра, например, водой, подаваемой в рубашку охлаждения 3, образуемую полыми стенками цилиндра (рис. 1). В реальных условиях эксплуатации отвод теплоты является таким, что сжатие газа осуществляется по политропе с показателем политропы n= 1,18 – 1,23.
Р
3 2' 2 2''
5 Р2
n n=k
газ n=1
4
3 2 1 вода lk
а
Р1 4 Vвс 1
Рис.1 V0 Vраб
V
Рис.2
Многоступенчатый компрессор. Применение одноступенчатых компрессоров для получения сжатых газов с весьма высоким давлением нецелесообразно, так как с повышением давления нагнетания объемный КПД и производительность компрессора уменьшаются. Другой причиной ограничения давления сжатия в одной ступени является недопустимость высокой температуры в конце сжатия, которая увеличивается с ростом конечного давления. Повышение температуры газа выше 200°С ухудшает условия смазки (происходит коксование масла) и может привести к самовозгоранию масла.
Для получения сжатого газа более высокого давления (1,0 – 1.2 МПа и выше) применяются многоступенчатые компрессоры с промежуточным охлаждением газа после каждой ступени. Сущность многоступенчатого сжатия может быть пояснена на примере двухступенчатого компрессора, схема которого представлена на рис. 3, а его идеальная (при Vo = 0) индикаторная диаграмма – на рис. 4.
P b 5 4 2'
вода Р3
Р1; T1 Р2; T2 Р2; T1 Р3; T2
II ступень
газ а 2
3 Р2 3
1 I ступень
Р1 0 1
вода 2 вода
V
Рис.3 Рис.4
В первой ступени 1 (рис.3 и 4) газ сжимается по политропе 1–2 до давления Р2, а затем он поступает в промежуточный холодильник 3, где охлаждается до начальной температуры T1. Гидравлическое сопротивление холодильника по воздушному тракту делают небольшим. Это позволяет считать процесс охлаждения 2–3 изобарным. После холодильника газ поступает во вторую ступень 2, где сжимается по политропе 3–4 до давления Р3. Если бы сжатие до давления Р3 осуществлялось в идеальном одноступенчатом компрессоре (линия 1–2', рис.4), то величина затраченной за цикл работы определялась бы площадью 012'b0 . При двухступенчатом сжатии с промежуточным охлаждением эта работа численно равна площади 01234b0. Заштрихованная площадь соответствует экономии работы за цикл при двухступенчатом сжатии. Обратите внимание на то, что чем больше ступеней сжатия и промежуточных холодильников, тем ближе будет процесс к наиболее экономичному изотермическому, так как ломанная линия 1–2–3–4 приближается к кривой изотермического сжатия 1–3–5 .
На рис.5 изображены процессы политропного сжатия 1–2, 3–4 и промежуточного изобарного охлаждения 2–3 в Ts-координатах. Заштрихованные площади показывают (в масштабе) количество теплоты, отводимой от воздуха в систему охлаждения: в первой ступени q1-2, во второй ступени q3-4 и в промежуточном холодильнике q2-3. Из рисунка видно, что промежуточное охлаждение позволяет снизить температуру конца сжатия с Т2' до T2, что обеспечивает надёжную смазку трущихся поверхностей.
Специальные расчёты показывают, что наиболее выгодным многоступенчатое сжатие оказывается в том случае, когда отношение давлений в каждой ступени будет одинаковым. При этом работа, затрачиваемая на привод многоступенчатого компрессора, будет минимальной. Обозначая отношение давлений в каждой ступени через x, его величину находят из выражения:
, (2)
где z – число ступеней компрессора; pнач – давление газа, поступающего в первую ступень; pкон – давление газа, выходящего из последней ступени.
При распределении отношений давлений по формуле (2) и при равенстве начальных температур и показателей политропы будут равны и затраченные работы во всех ступенях компрессора. Поэтому для вычисления работы на привод многоступенчатого компрессора lkΣ достаточно определить работу в одной ступени lk и умножить её на число ступеней, т.е. увеличить её в z раз.
Это утверждение относится и к определению количества теплоты, отводимой в ступенях через стенки цилиндров при политропном сжатии, и количестве теплоты, отводимой от газа в промежуточных холодильниках.
Из вышеизложенного следует, что многоступенчатое сжатие имеет следующие преимущества:
1) понижается отношение давлений в каждой из ступеней и в соответствии с этим повышается объемный КПД компрессора и его производительность;
2) улучшаются условия смазки поршня в цилиндре вследствие использования промежуточного охлаждения газа;
3) приближается рабочий процесс к изотермическому и уменьшается расход энергии на привод компрессора.
Вместе с тем, следует отметить, что вопрос о выборе числа ступеней, обеспечивающего заданную величину pкон, решается на основе не только термодинамических, но и технико-экономических соображений.