- •. Ультразвуковые колебания и преобразователи Содержание
- •Глава 2. Использование ультразвуковых преобразователей
- •Контрольные вопросы
- •Введение
- •Глава 1. Физические основы ультразвуковых колебаний.
- •1.1. Природа и получение ультразвуковых колебаний
- •1.2. Свойства ультразвука
- •1.3. Методы ультразвуковой дефектоскопии
- •1.4.Применение ультразвука
- •Глава 2. Использование ультразвуковые преобразователи.
- •2.1.Исторический обзор
- •2.2. Классификация преобразователей
- •2.3. Конструктивные особенности преобразователей
- •2.4.Выбор акустических параметров при проектировании ультразвуковых устройств
- •2.5.Резонансная частота и чувствительность преобразователя
- •2.6. Специальные преобразователи и контактные среды
- •2.7. Электромагнитные ультразвуковые преобразователи
- •2.8. Пьезоэлектрические преобразователи
- •2.9. Термин “Пьезоактивность”
- •2.11. Область применения пьезоэлектрических преобразователей
2.6. Специальные преобразователи и контактные среды
Если один современный дефектоскоп может быть использован для контроля практически любой дефектоскопической продукции, то вариации в геометрии и типоразмере сварных швов требуют применения различных преобразователей. Полная унификация здесь невозможна. Поэтому преобразователи разрабатываются для контроля конкретных швов.
Преобразователи для контроля швов труб. Основной трудностью при УЗ-контроле сварных стыков труб с толщиной стенки менее 10 мм является наличие ложных эхо-сигналов от обратного валика шва, мало отличающихся по времени и амплитуде от ожидаемых сигналов от дефектов. Кроме этого, из-за большой ширины валика шва, которая в 2—3 раза превосходит толщину стенки трубы, нельзя приблизить преобразователь к шву настолько, чтобы обеспечить прозвучивание центра шва акустической осью диаграммы преобразователя.
Преобразователи для контроля по грубой поверхности. Рассмотрим некоторые конструкции специальных преобразователей, применяющихся для контроля металла и сварных швов по грубой поверхности.
Широкое применение нашли эластичные преобразователи с герметизированной иммерсионной локальной ванной, внутри которой размещен пьезоэлемент. Эти преобразователи обеспечивают высокую стабильность чувствительности, однако имеют следующие недостатки: большие габариты, относительно высокий уровень реверберационных шумов, нестабильный угол ввода ультразвука в контролируемое изделие, необходимость частой замены резинового донышка ванны вследствие проколов. Эти недостатки отсутствуют у наклонных преобразователей, на рабочую поверхность которых наклеена резина. Однако преобразователи такой конструкции недолговечны.
Преобразователь ИЦ-15Б со свободно скользящим трубчатым протектором не имеет указанных недостатков. В качестве материала протектора в нем используется маслостойкая резина, из которой изготавливается кольцо диаметром 28—30 мм, толщиной 0,8—1,2 мм. В кольце делается большое число проколов или сверлений. При перемещении преобразователя по изделию эластичный протектор вращается, облегает неровности контролируемого металла, что способствует улучшению акустического контакта. В зазор между преобразователем и протектором вводится масло.
Преобразователи с иммерсионной локальной ванной и менискового типа фактически не требуют специальной подготовки поверхности. Они закрепляются внутри кожуха с регулируемым контактным зазором. С помощью штуцеров и двух трубок внутренний объем кожуха соединен с герметичным бачком для воды. При работе в бачке создается небольшое разряжение, которое удерживает воду внутри кожуха; в результате создается стабильный акустический контакт даже на очень грубой поверхности. Такая конструкция обеспечивает ничтожный расход воды, но допускает возможность работы лишь в нижнем положении.
Хорошие результаты по повышению стабильности чувствительности ультразвукового дефектоскопа достигнуты при использовании капиллярных эффектов. Здесь возможны различные конструктивные решения.
Во-первых, акустическую задержку (призму) можно выполнить из капиллярно-активных слоистых материалов, подобных тем, которые используются в сердечниках фломастеров.
Во-вторых, непосредственно на рабочую поверхность обычной призмы из оргстекла можно нанести слой капиллярно-пористого протектора небольшой толщины.
В-третьих, по периферии призмы можно сделать капиллярные каналы (сверлением или фрезерованием).
Во всех конструкциях капилляры служат аккумулятором контактной жидкости и обеспечивают автоматическую подпитку контактного зазора, что ускоряет восстановление сплошности контактного слоя.