
- •(Для студентов специальности 7.010104 “Профессиональное обучение. Промышленное, гражданское и сельскохозяйственное строительство”)
- •Оглавление
- •1. Исследовательская и изобретательская деятельность
- •1. 1. Понятие о научно-исследовательской работе.
- •2. Основы измерения физических величин
- •2.2. Основные понятия об измерениях физической величины Блок-схема процесса измерения
- •2.3. Прямые и косвенные методы измерения
- •2.4. Аналоговые и цифровые методы измерений
- •2.5. Непрерывные и дискретные методы измерения
- •2.6. Методы отклонения и компенсационный метод
- •2.7. Классификация средств измерений
- •2.8. Структура измерительных приборов
- •2.9. Метрологические характеристики средств измерения
- •3. Погрешности измерений и их причины
- •3.1. Представительность измеряемой величины
- •3.2. Погрешности, связанные с процессом измерения
- •3.3. Погрешности, связанные с обработкой измеренных величин
- •3.4. Погрешности измерительных устройств
- •4. Статические погрешности измерений
- •4.1. Виды погрешностей
- •4.2. Случайная погрешность отдельного измерения
- •4.3. Случайная погрешность среднего значения
- •4.4. Систематическая погрешность
- •4.5. Распространение погрешностей
- •5. Способы обработки результатов измерений с учетом статистических погрешностей
- •5.1. Проверка гипотезы нормальности распределения
- •5.2. Грубые погрешности измерения и их отсеивание
- •5.3. Различие средних значений
- •5.4. Линейная регрессия
- •5.5. Линейная корреляция
- •5.6. Автоматическая коррекция погрешности
- •6. Динамические погрешности измерений
- •6.1. Измерение как процесс передачи сигналов
- •6.2. Сигналы и их математическое описание
- •6.3. Временные характеристики детерминированных сигналов
- •6.4. Временные характеристики стохастических сигналов
- •6.5. Частотные характеристики периодического сигнала
- •6.6. Частотные характеристики апериодического сигнала
- •6.7. Частотные характеристики стохастического сигнала
- •6.8. Дискретные сигналы
- •6.9. Динамические погрешности измерения
- •7.2. Погрешности отображения (преобразования) физической величины
- •7.3. Способы и средства первичного преобразования физической величины
- •7.4. Виды первичных преобразователей
- •7.5. Эффекты и чувствительные элементы, используемые для первичного преобразования
- •7.6. Измерительные преобразователи с электронным цифровым выходным сигналом
- •8. Приборы выдачи информации
- •8.1. Аналоговые приборы выдачи информации
- •8.2. Приборы выдачи цифровой информации
- •8.3. Дискретно-аналоговые преобразователи
- •8.4. Печатающие устройства для результатов измерений
- •8.5. Электронно-лучевые визуальные приборы
- •9. Способы и средства измерения продольных деформаций, наклепа и остаточных напряжений
- •9.1. Электрические способы измерения деформаций
- •Индуктивные тензометры
- •9.2. Механические способы измерения деформаций
- •9.3. Визуальные методы оценки деформаций
- •Литература
5.5. Линейная корреляция
Если
пары значений
изучают с целью выявления линейной
зависимости
и при этом
и
не рассматривают соответственно как
зависимую и независимую переменные,
то в этом случае говорят
о корреляции. Например, рост пар сестер
имеет статистическую
зависимость. Однако было бы бессмысленным
рост одной сестры
рассматривать как свободную, а рост
другой — как зависимую
переменную. Такая же постановка вопроса
имеет место, например,
при сопоставлении давления воздуха,
атмосферных осадков или температуры в
различных местах.
Если пары значений нанести на - - диаграмму и искать прямую, которая изображает возможную линейную зависимость, то можно использовать метод наименьших квадратов. Имеют смысл две прямые, так как каждая переменная в равной мере может быть рассмотрена и как зависимая, и как независимая.
Если
рассматривают функцию
,
то
коэффициент
b1
выбирают
так, чтобы сумма всех квадратов
была
бы минимальной. Однако с теми же
основаниями величина у
может
рассматриваться как свободная переменная.
Тогда коэффициент b2
функции
выбирают
так, чтобы минимальной была сумма всех
квадратов
=
В
общем случае обе прямые
не совпадают.
Можно показать, что обе величины b1 и b2 тем сильнее стремятся к нулю, и, следовательно, приближаются друг к другу, чем более независимы друг от друга и . При полной статистической независимости прямые перпендикулярны и b1 = b2 = 0.
Если
имеет место функциональная зависимость
в математическом смысле, то
=
1/
и
обе прямые регрессии совпадают.
Коэффициенты крутизны b1 и b2 в зависимости от степени (тесноты) статистической связи изменяются между нулем и значением крутизны соответствующей линейной функциональной зависимости. Поэтому значения b1 и b2 в какой-то мере отражают тесноту линейной связи. Однако полностью охарактеризовать ее они не могут, так как не зафиксирована верхняя граница b. Этого можно достичь посредством нормирования. Нормированный следующим образом коэффициент r называется коэффициентом корреляции:
(6.2)
Коэффициент,
корреляции r
может
принимать значения только между
-1
и
+1. При
строгой (функциональной) линейной связке
и
пары
значений
(
лежат
на прямой. При положительном коэффициенте
угла наклона прямой имеем
r=
+1,
а при отрицательном
r=
-1.
Если
и
у
полностью
статистически независимы, то
r
= 0.
Модуль коэффициента r является мерой линейной зависимости. Чем ближе пары значений расположены к прямой, тем в большей степени модуль r приближается к единице.
Здесь необходимо сделать три замечания, чтобы избежать ошибочной интерпретации.
1. Из сказанного вытекает, что, если две величины не зависят друг от друга, то они не коррелированы и r = 0; если пары величин ( лежат на прямой, то r= 1.
Однако обратные утверждения в общем случае не верны. Если r = 0, то это означает, что отсутствует линейная зависимость. Но это не означает, что и у вообще не зависят друг от друга.
Если r = 1, то из этого не следует, что зависимость между и у линейна, а только то, что эти величины зависят друг от друга.
2. Если r используется как мера линейной зависимости, то необходимо учитывать, что r зависит от объема выборки n. Очевидно, что npи наличии только двух пар величин r всегда равен единице. Однако, как мы увидим при определении доверительных границ, при малых n доверительный интервал увеличивается и использование r в качестве статистической характеристики только при двух парах значений недопустимо.
3. Если пары значений лежат вблизи прямой, то из того, что r принимает значение, близкое ±1, не следует, что эта линейная зависимость отображает также причинно-следственную связь. Например, одновременно увеличиваются и средняя продолжительность жизни, и число жертв движения. Весьма вероятно, что имеется корреляция между числом совершаемых краж и числом автомобилей в определенной стране, так как и то и другое увеличивается. Возможно, что такая мнимая, лишенная смысла корреляция, происходит от того, что коррелированные явления имеют общую причину, однако так бывает не всегда. Гипотеза наличия причинно-следственной связи должна быть обоснована в каждом отдельном случае, Корреляция показывает лишь то, не противоречат ли полученные результата этой гипотезе.
Коэффициент
корреляции r,
рассчитанный по уравнению (6.2),
характеризует
корреляцию в выборке. Он может быть
использован в качестве
оценки математического ожидания
коэффициента корреляции
генеральной совокупности. При этом
снова возникает задача статистической
достоверности этого коэффициента.
Наиболее
просто проверить гипотезу
=
0. При этом проверяют, является ли
отличие коэффициента корреляции
r
от
нуля статистически значимым.
Однако эта проверка равнозначна проверке
статистической
значимости отличия от нуля коэффициентов
b1
прямой
регрессии у
—
= b1
.
Поэтому
она может быть осуществлена
в соответствии с процедурой, изложенной
выше.
Доверительный интервал для коэффициента корреляции определяют следующим образом:
1. Выбирают доверительную вероятность Р (например, 95,99 % и т. п.).
2.
По
результатам, представленным на рис.5.1
статистической надежности определяют
величину
вычисляют
и определяют с.
3. Определяют коэффициент корреляции
4.
По результатам исследований (рис. 6.3)
определяют зависимость
5. Еще раз, используя результаты, представленные на графике (рис. 6.3), определяют величины:
6.
Доверительный интервал для
будет равен
.