
- •1.2. Единицы радиоактивности
- •1.3. Типы ядерных превращений. Взаимодействие ии с веществами. Виды ии и их характеристика
- •1.3.1. Альфа-распад
- •1.3.2. Бета-распад
- •1.3.4. Самопроизвольное деление ядер
- •1.3.5. Термоядерные реакции
- •1.4. Понятие дозиметрии. Поглощенная и экспозиционная дозы излучения
- •1.4.1. Экспозиционная доза излучения
- •1.4.2. Поглощенная доза излучения
- •1.5. Относительная биологическая эффективность ии
- •Помимо перечисленных понятий, в радиационной безопасности широко используются термины годовой и коллективной эффективной или эквивалентной дозы.
- •1.6. Мощность дозы и единицы ее измерения
- •1.7. Закон радиоактивного распада
- •1.8. Принципы работы радиометрической аппаратуры
- •1.8.1. Ионизационные детекторы
- •1.8.2. Полупроводниковые детекторы
- •1.8.3. Сцинтилляционные детекторы
- •Раздел 2 источники ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами
- •2.1. Классификация источников ии. Природный радиационный фон
- •2.2. Естественные источники ии
- •2.2.1. Космическое излучение
- •2.2.2. Природные (естественные) радиоактивные вещества
- •2.2.2.1. Радиоактивность оболочек Земли
- •2.2.2.2. Радиоактивность горных пород
- •2.2.2.3. Радиоактивность почв
- •2.2.2.4. Радиоактивность природных вод
- •2.2.2.5. Радиоактивность атмосферного воздуха
- •2.3. Искусственные источники ионизирующих излучений и их характеристика
- •2.3.1. Источники ионизирующих излучений, использующиеся в медицине
- •2.3.2. Ядерные и термоядерные взрывы
- •2.3.3. Атомная энергетика
- •2.3.3.1. Экологические проблемы, возникающие в условиях нештатной (аварийной) работы радиационно-опасных объектов
- •2.3.3.2. Добыча и переработка радиоактивного минерального сырья
- •2.3.4. Добыча и переработка углеводородного сырья
- •2.3.5. Полигоны для испытания ядерного оружия
- •2.3.6. Ядерные взрывы в мирных целях
- •2.3.7. Ядерные реакторы исследовательского типа
- •2.3.8. Загрязнение морей атомными кораблями
- •2.3.9. Источники ионизирующего излучения в быту в быту наибольшее влияние оказывают излучения видеотерминалов – телевизоров, компьютеров и др.
- •2.4. Экологическая характеристика искусственных радиоактивных изотопов
- •2.5. Радиоактивные отходы и экология
- •2.6. Защита от радиационного излучения
- •2.6.1. Принципы нормирования в области радиационной безопасности
- •Помимо перечисленных понятий, в радиационной безопасности широко используются термины годовой и коллективной эффективной или эквивиалентной дозы.
- •2.6.2. Принципы радиозащитного питания
- •Принцип радиозащитного питания
- •Сбалансированность пищевого рациона
- •Раздел 3 биологическое действие ионизирующих излучений
- •3.1. Физическая стадия
- •3.2. Физико-химическая стадия
- •3.3. Химическая стадия. Прямое и непрямое действие радиации
- •3.4. Молекулярные повреждения, возникающие в клетках
- •3.5. Действие ионизирующих излучений на критические системы организма
- •3.5.1. Основные механизмы гемо- и иммунопоэза
- •3.5.2. Влияние облучения на процесс костномозгового кроветворения
- •3.5.3. Постлучевые изменения морфологического состава периферической крови
- •3.5.4. Влияние облучения на иммунную систему
- •3.5.5. Действие ионизирующей радиации на желудочно-кишечный тракт
- •3.5.6. Действие ионизирующей радиации на эмбрион, плод
- •3.6. Радиационные поражения человека
- •3.6.1. Острая лучевая болезнь от внешнего равномерного облучения
- •3.6.1.1. Костномозговая форма острой лучевой болезни
- •3.6.1.2. Кишечная форма острой лучевой болезни
- •3.6.1.3. Токсемическая форма острой лучевой болезни
- •3.6.1.4. Церебральная форма острой лучевой болезни
- •3.6.2. Биологическое действие инкорпорированных радионуклидов
- •3.6.2.1. Пути поступления радиоактивных веществ в организм
- •3.6.2.2. Метаболизм радиоактивных веществ, всосавшихся в кровь
- •3.6.2.3. Выведение радиоактивных веществ из организма
- •3.6.2.4. Биологическое действие радиоактивных веществ
- •3.6.2.5. Особенности действия отдельных биологически значимых радионуклидов
- •Раздел 4 радиационная экология экосистем
- •4.1. Наземные экосистемы
- •4.1.1. Радионуклиды в искусственных агробиогеоценозах
- •4.1.1.1. Особенности ведения сельскохозяйственного производства в ближайший период после выпадения радиоактивных осадков
- •4.1.1.2. Ведение сельскохозяйственного производства в период «йодной опасности»
- •4.1.1.3. Ведение сельскохозяйственного производства в период поверхностного загрязнения почвы радиоактивными веществами
- •4.1.1.4. Ведение сельскохозяйственного производства в период корневого поступления рв в растения
- •4.1.1.5. Прогнозирование поступления радионуклидов в сельскохозяйственную продукцию
- •4.2. Пресноводные экосистемы
- •4.2.1. Накопление радионуклидов пресноводными растениями
- •4.2.2. Накопление радионуклидов пресноводными животными
- •4.3. Поведение радионуклидов на территории различных природных зон России
- •4.4. Радиационное загрязнение регионов России
- •Уральский регион
- •Приложения
- •Приложение 1
- •Временные допустимые уровни содержания радионуклидов 137Cs и в пищевых продуктах и питьевой воде, установленные в связи с аварией на Чернобыльской аэс
- •100 Бк/сутки для стронция-90 и 210 Бк/сутки для цезия-137.
- •Приложение 9
- •Терминологический словарь
- •Литература
- •Содержание
- •Раздел 1. Физические основы биологического действия ионизирующих излучений (ии)
- •424001, Г. Йошкар-Ола, пл. Ленина 1
1.8.2. Полупроводниковые детекторы
Они сходны с ионизационными, но роль ионизационной камеры в этом случае выполняют твердые полупроводники.
Полупроводники – это кристаллические вещества, электропроводность которых при обычной температуре имеет промежуточное значение между электропроводностью металлов (106-104 Ом-1/см-1) и диэлектриков (10-10-10-12 Ом-1/см-1). Под действием радиоактивных частиц в полупроводниковых детекторах происходит переход электронов из валентной зоны в зону проводимости. В результате образуются свободные носители зарядов: электроны (п-проводимость) и дырки (р-проводимость). Под действием внешнего электрического поля, приложенного к полупроводнику, электроны и дырки притягиваются к соответствующим электродам, обусловливая накопление заряда. Последний дает импульс напряжения, который подается в усилительно-измерительную схему прибора.
В качестве полупроводника в радиометрических приборах чаще всего применяют монокристаллы германия. С его помощью регистрируют высокоэнергетические гамма- и бета-лучи. Для регистрации альфа-частиц, низкоэнергетических гамма-квантов и рентгеновских лучей используют кремниевые детекторы (монокристаллы кремния).
В противоположность металлам, у которых электропроводность уменьшается с ростом температуры, у полупроводников с увеличением этого параметра электропроводность резко возрастает. Поэтому многие из полупроводниковых материалов требуют сильного охлаждения при работе, что усложняет устройство приборов, их эксплуатацию и удорожает их стоимость. Исследователи находятся в постоянном поиске новых полупроводников, которые могут работать при обычных температурах. К таким материалам относятся теллурид кадмия, арсенид галлия и йодид ртути, которые уже используются в самых современных радиометрах и спектрометрах. Поскольку плотность полупроводниковых материалов намного выше плотности газов, то энергия поглощаемых частиц в них используется полнее, чем в ионизационных камерах. Поэтому полупроводниковые детекторы обладают очень высокой разрешающей способностью.
1.8.3. Сцинтилляционные детекторы
Сущность работы сцинтилляционного счетчика заключается в регистрации вспышек люминесценции, возникающих в некоторых кристаллах, органических жидкостях или пластмассах при попадании в них заряженных частиц или гамма-квантов. Вспышки в кристалле фиксируются фотокатодом и в цепи возникает импульс электрического тока.
Однако, сами по себе вспышки могут быть очень слабыми. Для их фиксации применяются фотоэлектронные умножители (ФЭУ). Они представляют собой вакуумные электронные приборы с системой умножения электронов, выбитых световой вспышкой с поверхности фотокатода (рис. 3). Умножительная система состоит из нескольких последовательно расположенных диодов (эмиттеров), покрытых специальным слоем. Электроны, бомбардирующие диоды, выбивают из них вторичные электроны, количество которых минимум в 2 раза превышает число первичных электронов. Таким образом, каждый последующий диод увеличивает количество электронов. С последнего диода в усилительно-измерительную схему прибора поступает лавина электронов. Благодаря ФЭУ сцинтилляционные счетчики обладают гораздо большей чувствительностью по сравнению с газонаполненными счетчиками.
Для регистрации альфа-частиц в качестве сцинтилляторов (люминофоров) применяют тонкий слой сернистого цинка, а регистрация бета-частиц осуществляется с помощью кристаллов антрацена, стильбена, а также сцинтиллирующих пластмасс. При регистрации гамма-квантов в отечественных приборах успешно используются монокристаллы йодистого натрия и йодистого цезия, активизированные таллием.
Рис. 3. Схема фотоэлектронного умножителя:
1 – гамма-квант; 2 – кристалл-люминофор; 3 – фотокатод; 4 – эмиттеры (диноды); 5 – коллектор