
- •1.2. Единицы радиоактивности
- •1.3. Типы ядерных превращений. Взаимодействие ии с веществами. Виды ии и их характеристика
- •1.3.1. Альфа-распад
- •1.3.2. Бета-распад
- •1.3.4. Самопроизвольное деление ядер
- •1.3.5. Термоядерные реакции
- •1.4. Понятие дозиметрии. Поглощенная и экспозиционная дозы излучения
- •1.4.1. Экспозиционная доза излучения
- •1.4.2. Поглощенная доза излучения
- •1.5. Относительная биологическая эффективность ии
- •Помимо перечисленных понятий, в радиационной безопасности широко используются термины годовой и коллективной эффективной или эквивалентной дозы.
- •1.6. Мощность дозы и единицы ее измерения
- •1.7. Закон радиоактивного распада
- •1.8. Принципы работы радиометрической аппаратуры
- •1.8.1. Ионизационные детекторы
- •1.8.2. Полупроводниковые детекторы
- •1.8.3. Сцинтилляционные детекторы
- •Раздел 2 источники ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами
- •2.1. Классификация источников ии. Природный радиационный фон
- •2.2. Естественные источники ии
- •2.2.1. Космическое излучение
- •2.2.2. Природные (естественные) радиоактивные вещества
- •2.2.2.1. Радиоактивность оболочек Земли
- •2.2.2.2. Радиоактивность горных пород
- •2.2.2.3. Радиоактивность почв
- •2.2.2.4. Радиоактивность природных вод
- •2.2.2.5. Радиоактивность атмосферного воздуха
- •2.3. Искусственные источники ионизирующих излучений и их характеристика
- •2.3.1. Источники ионизирующих излучений, использующиеся в медицине
- •2.3.2. Ядерные и термоядерные взрывы
- •2.3.3. Атомная энергетика
- •2.3.3.1. Экологические проблемы, возникающие в условиях нештатной (аварийной) работы радиационно-опасных объектов
- •2.3.3.2. Добыча и переработка радиоактивного минерального сырья
- •2.3.4. Добыча и переработка углеводородного сырья
- •2.3.5. Полигоны для испытания ядерного оружия
- •2.3.6. Ядерные взрывы в мирных целях
- •2.3.7. Ядерные реакторы исследовательского типа
- •2.3.8. Загрязнение морей атомными кораблями
- •2.3.9. Источники ионизирующего излучения в быту в быту наибольшее влияние оказывают излучения видеотерминалов – телевизоров, компьютеров и др.
- •2.4. Экологическая характеристика искусственных радиоактивных изотопов
- •2.5. Радиоактивные отходы и экология
- •2.6. Защита от радиационного излучения
- •2.6.1. Принципы нормирования в области радиационной безопасности
- •Помимо перечисленных понятий, в радиационной безопасности широко используются термины годовой и коллективной эффективной или эквивиалентной дозы.
- •2.6.2. Принципы радиозащитного питания
- •Принцип радиозащитного питания
- •Сбалансированность пищевого рациона
- •Раздел 3 биологическое действие ионизирующих излучений
- •3.1. Физическая стадия
- •3.2. Физико-химическая стадия
- •3.3. Химическая стадия. Прямое и непрямое действие радиации
- •3.4. Молекулярные повреждения, возникающие в клетках
- •3.5. Действие ионизирующих излучений на критические системы организма
- •3.5.1. Основные механизмы гемо- и иммунопоэза
- •3.5.2. Влияние облучения на процесс костномозгового кроветворения
- •3.5.3. Постлучевые изменения морфологического состава периферической крови
- •3.5.4. Влияние облучения на иммунную систему
- •3.5.5. Действие ионизирующей радиации на желудочно-кишечный тракт
- •3.5.6. Действие ионизирующей радиации на эмбрион, плод
- •3.6. Радиационные поражения человека
- •3.6.1. Острая лучевая болезнь от внешнего равномерного облучения
- •3.6.1.1. Костномозговая форма острой лучевой болезни
- •3.6.1.2. Кишечная форма острой лучевой болезни
- •3.6.1.3. Токсемическая форма острой лучевой болезни
- •3.6.1.4. Церебральная форма острой лучевой болезни
- •3.6.2. Биологическое действие инкорпорированных радионуклидов
- •3.6.2.1. Пути поступления радиоактивных веществ в организм
- •3.6.2.2. Метаболизм радиоактивных веществ, всосавшихся в кровь
- •3.6.2.3. Выведение радиоактивных веществ из организма
- •3.6.2.4. Биологическое действие радиоактивных веществ
- •3.6.2.5. Особенности действия отдельных биологически значимых радионуклидов
- •Раздел 4 радиационная экология экосистем
- •4.1. Наземные экосистемы
- •4.1.1. Радионуклиды в искусственных агробиогеоценозах
- •4.1.1.1. Особенности ведения сельскохозяйственного производства в ближайший период после выпадения радиоактивных осадков
- •4.1.1.2. Ведение сельскохозяйственного производства в период «йодной опасности»
- •4.1.1.3. Ведение сельскохозяйственного производства в период поверхностного загрязнения почвы радиоактивными веществами
- •4.1.1.4. Ведение сельскохозяйственного производства в период корневого поступления рв в растения
- •4.1.1.5. Прогнозирование поступления радионуклидов в сельскохозяйственную продукцию
- •4.2. Пресноводные экосистемы
- •4.2.1. Накопление радионуклидов пресноводными растениями
- •4.2.2. Накопление радионуклидов пресноводными животными
- •4.3. Поведение радионуклидов на территории различных природных зон России
- •4.4. Радиационное загрязнение регионов России
- •Уральский регион
- •Приложения
- •Приложение 1
- •Временные допустимые уровни содержания радионуклидов 137Cs и в пищевых продуктах и питьевой воде, установленные в связи с аварией на Чернобыльской аэс
- •100 Бк/сутки для стронция-90 и 210 Бк/сутки для цезия-137.
- •Приложение 9
- •Терминологический словарь
- •Литература
- •Содержание
- •Раздел 1. Физические основы биологического действия ионизирующих излучений (ии)
- •424001, Г. Йошкар-Ола, пл. Ленина 1
2.3.9. Источники ионизирующего излучения в быту в быту наибольшее влияние оказывают излучения видеотерминалов – телевизоров, компьютеров и др.
Сегодня трудно найти более изменившее нашу жизнь изобретение, неизмеримо ускорившее сам процесс творчества и цивилизацию в целом, чем компьютер. С ним давно освоились ученые и инженеры, он прочно вошел в научные учреждения и конструкторское бюро, стал любимой игрушкой детей и подростков. Растет число компьютерных классов в школах и вузах. Одним словом, количество видеотерминалов стремительно нарастает.
Поэтому всеобщая компьютеризация общества остро поставила вопросы безопасности работы оператора. Объективно зафиксированы многочисленные жалобы пользователей компьютеров на ухудшение здоровья. Проблема безопасности работы с монитором настолько серьезна, что находит отражение в деятельности многих международных организаций.
Видеотерминалы излучают электромагнитные поля в очень широком диапазоне. Основными же их источниками служат горизонтальные и вертикальные отклоняющие катушки, которые сканируют электронный луч и работают в диапазоне 15-35 кГц. На расстоянии 50 см от экрана обычная напряженность электрических полей – от 0,5 до 10 В/м, а интенсивность магнитного поля – от 0,1 до 1,0 мГс.
В 1988 году американские исследователи сообщили об увеличении на 80% частоты выкидышей у женщин, проводивших за видеотерминалом не менее 20 часов в неделю. Эти тревожные факты они поспешили объяснить не прямым воздействием компьютеров, а эмоциональным стрессом.
В 1992 году скандинавские ученые опубликовали результаты исследований, выводы из которых были весьма неутешительны: при пользовании видеотерминалами, создающими сильные магнитные поля в диапазоне низких частот, у женщин, активно работающих на компьютерах, вероятность выкидышей в 3,5 раза выше, чем у не пользующихся видеотерминалами (Анисимов В.Н., 1995). Мало того, из опытов на животных выяснилось, что магнитные поля (даже слабые) могут отрицательно воздействовать на развитие плода.
Рентгеновское излучение, возникающее при торможении электронного луча на внутренней поверхности кинескопа, является еще одним источником вредных воздействий на оператора. И хотя уровень такого излучения обычно ниже фонового значения в любом офисе, тем не менее, Национальный институт радиационной защиты в Стокгольме (Швеция) установил достаточно жесткий стандарт уровня рентгеновского излучения мониторов, который гласит, что «уровень рентгеновского излучения мониторами должен быть настолько низким, чтобы его невозможно было зафиксировать измерениями».
Синий люминофор экрана монитора вместе с ускоренными в электронно-лучевой трубке электронами являются источником ультрафиолетового излучения. Его воздействие особенно сказывается при длительной работе с компьютером или при заболеваниях сетчатки глаза. Защититься от воздействия ультрафиолета можно, используя стеклянный защитный фильтр.
Излучение телевизора. В настоящее время ничто не может сравниться с голубым экраном телевизора по скорости, полноте, достоверности и красочности передаваемой информации. Но вместе с тем телевизор также таит в себе определенную опасность для человека.
Телевизор представляет собой электронно-вакуумный пробор, создающий видимое изображение (цветное или черно-белое) за счет облучения электронами люминесцентного экрана кинескопа. В кинескопе с особого катода, находящегося под высоким напряжением, вылетают с большой скоростью электроны, бомбардирующие люминесцентный экран, создавая за счет движения луча (15-120 кГц) видимое изображение. Возникающее во время бомбардировки экрана вторичное облучение губительно действует на любой живой организм, находящийся вблизи экрана. Спектр вторичного излучения очень широк – микроволновая, рентгеновская и ультрафиолетовая радиация, электронное излучение и другие виды электромагнитных полей.
Средняя мощность радиации у цветного телевизора составляет 40-50 мкР/ч. Для сравнения, полет самолета на высоте 10-12 тыс. км – 500 мкР/ч.
При пользовании компьютером:
– освещение должно быть слева от компьютера, старайтесь избегать бликов от дополнительных источников света. Общая освещенность должна быть порядка 300-500 люкс;
– излучение идет не только со стороны экрана, но и с боковых и задних поверхностей. Поэтому лучше, чтобы компьютер тылом был расположен к стене. Если это по каким-то причинам невозможно, то расстояние между тылом одной ЭВМ и экраном другой должно быть не менее 2 метров; между боковыми поверхностями – не менее 1,2 м. Электромагнитные поля быстро убывают с увеличением расстояния от источника излучения: в 10 см от экрана компьютера в 5-10 раз выше, чем на расстоянии, где обычно сидит человек. Площадь на одно рабочее место должна составлять не менее 6 м2.
ОСНОВНЫЕ ПРАВИЛА:
1. В среднем через каждые 2 часа нужно делать 10-15 минутные перерывы. Беременные и кормящие женщины к работе с компьютером не допускаются.
2. Для преподавателей вузов и школ установлена длительность работы в дисплейных классах и кабинетах информатики не более 4 часов в день.
3. Инженеры, обслуживающие учебный процесс, могут находиться в них не более 6 часов.
4. Студенты 1 курса могут работать на компьютере 1 час, старшекурсники – 2 часа с перерывом на 15-20 минут.
5. Для учащихся:
– 10-11 классов должно быть не более 2 уроков на компьютерах в неделю, а для остальных классов – один урок;
– 1-х классов –10 минут;
– 2-5 классов – не более 15 минут;
– 6-7 классов – не более 20 минут;
– 8-9 классов – не более 25 минут.