
- •1.1. Вычисление определителей
- •1.2. Линейные операции над матрицами
- •1.3. Умножение матриц
- •1.4. Ранг матрицы
- •1.5. Обратная матрица
- •1.6. Системы линейных уравнений
- •2.1. Прямоугольные координаты на плоскости
- •2.2. Полярные координаты на плоскости
- •2.3. Прямая на плоскости
- •2.4. Кривые второго порядка
- •2.5. Прямая и плоскость в пространстве
- •2.6. Поверхности второго порядка
- •3.1. Область определения функции
- •3.2. Предел функции
- •3.3. Производные высших порядков
- •3.4. Дифференциальное исчисление фнп
- •3.5. Основные методы интегрирования
- •3.6. Приложения определенного интеграла
- •4.1. Числовые последовательности
- •4.2. Сходимость числовых рядов
- •4.3. Область сходимости степенного ряда
- •4.4. Ряд Тейлора (Маклорена)
- •5.1. Типы дифференциальных уравнений
- •5.2. Дифференциальные уравнения с разделяющимися переменными
- •5.3. Линейные неоднородные дифференциальные уравнения первого
- •5.4. Задача Коши для дифференциального уравнения первого порядка
- •5.5. Линейные дифференциальные уравнения второго порядка с
- •5.6. Дифференциальные уравнения высших порядков, допускающие
- •6.1. Определение вероятности
- •6.2. Теоремы сложения и умножения вероятностей
- •6.3. Полная вероятность. Формулы Байеса
- •6.4. Законы распределения вероятностей дискретных случайных
- •6.5. Законы распределения вероятностей непрерывных случайных
- •6.6. Числовые характеристики случайных величин
5.2. Дифференциальные уравнения с разделяющимися переменными
Тема:
Дифференциальные уравнения с разделяющимися
переменными
Общее
решение дифференциального уравнения
имеет
вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение:
Разделим
переменные в исходном уравнении
и
проинтегрируем обе части последнего
равенства:
.
Тогда
,
где постоянная интегрирования
.
Откуда
,
.
Тема:
Дифференциальные уравнения с разделяющимися
переменными
Общее
решение дифференциального уравнения
имеет
вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение:
Разделим
переменные в исходном уравнении
и
проинтегрируем обе части последнего
равенства:
.
Тогда
,
где постоянная интегрирования
.
Откуда
,
.
Тема:
Дифференциальные уравнения с разделяющимися
переменными
Общее
решение дифференциального уравнения
имеет
вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
Решение:
Разделим
переменные в исходном уравнении
и
проинтегрируем обе части последнего
равенства:
.
Тогда
,
где постоянная интегрирования
.
Откуда
,
.
5.3. Линейные неоднородные дифференциальные уравнения первого
порядка
Тема:
Линейные неоднородные дифференциальные
уравнения первого порядка
Общее
решение дифференциального уравнения
имеет
вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение:
Введем
замену
,
.
Тогда уравнение
примет
вид
,
или
.
Пусть
.
Тогда
.
Подставим найденное значение
в
уравнение
.
Получим:
,
то есть
и
,
где постоянная интегрирования
.
Окончательное решение имеет вид
,
.
Тема:
Линейные неоднородные дифференциальные
уравнения первого порядка
Общее
решение дифференциального уравнения
имеет
вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение:
Уравнение
перепишем
в виде
.
Введем замену
,
и
получим:
,
или
.
Пусть
.
Тогда
.
Подставим найденное значение
в
уравнение
.
Получим:
.
Тогда
и
,
где постоянная интегрирования
.
Окончательное решение имеет вид
,
.
Тема:
Линейные неоднородные дифференциальные
уравнения первого порядка
Общее
решение дифференциального уравнения
имеет
вид …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение:
Уравнение
перепишем
в виде
.
Введем
замену
,
.
Тогда уравнение
примет
вид:
,
или
.
Пусть
.
Тогда
.
Подставим найденное значение
в
уравнение
.
Получим:
.
Тогда
и
,
где постоянная интегрирования
.
Окончательное решение имеет вид
,
.
Тема: Линейные неоднородные дифференциальные уравнения первого порядка Общее решение дифференциального уравнения имеет вид …
|
|
|
, |
|
|
|
, |
|
|
|
, |
|
|
|
, |
Решение: Уравнение перепишем в виде . Введем замену , и получим: , или . Пусть . Тогда . Подставим найденное значение в уравнение . Получим: . Тогда и , где постоянная интегрирования . Окончательное решение имеет вид , .