Добавил:
course-as.ru Авшаров Евгений Михайлович, ejen@course-as.ru Инвестор и Технический директор ООО 'КУРС-АС1', Москва, http://www.course-as.ru, Все наиболее важное обо мне:http://www.course-as.ru/Avsharov.html Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Тесла - Лекции и Статьи

.pdf
Скачиваний:
438
Добавлен:
18.11.2019
Размер:
5.87 Mб
Скачать

L-163

изменений потенциала и импульсов перенапряжения тока, которые даже на большом расстоянии дают физиологический эффект. Во время моих первых экспериментов, как показано на рисунке, я использовал две металлические пластины, однако, позже я предпочел им две полые латунные сферы, покрытые воском, толщиной около двух дюймов. Кабели, идущие к клеммам вторичной катушки, были покрыты воском примерно так же. Таким образом, обеспечивалась возможность подхода к ним без риска получить травму от электрического удара, которому подвергался экспериментатор в случае использовании пластин.

На Рис. 7 изображена схема схожего использования динамического индукционного эффекта тока высокой частоты.

Поскольку частота тока, вырабатываемая альтернатором, не настолько высока, как требуется, приходится использовать конденсаторы. Нижеприводимое описание позволит легко понять эту схему. Следует только отметить, что первичный контур p, через который происходит разрядка конденсаторов, охватывает все помещение зала, и выполнен из толстого кабеля с низкой самоиндукцией и сопротивлением. Можно задействовать любое количество вторичных катушек s S S, каждая из которых содержала бы только один слой достаточно толстого провода. Вполне реально подключить около сотни таких катушек таким образом, чтобы каждая из них соответствовала бы определенному периоду и реагировала бы на строго определенные колебания, производимые первичной катушкой. Такую установку я использовал в своей лаборатории с 1892 года, и она неоднократно доставляла удовольствие моим гостям, и при практическом использовании показала себя с самой лучшей стороны. В последнем случае, я имел честь привлечь к участию в экспериментах нескольких членов Ассоциации. Пользуясь случаем, хочу выразить им глубокую благодарность за интерес, проявленный к моей работе, а также выразить признательность Ассоциации за проявленную любезность. С тех нор мой аппарат подвергся весьма значительным изменения в лучшую сторону, и в настоящее время в лаборатории я могу создать индукционное поле такой интенсивности, что катушка диаметром в три фута, при соблюдении соответствующих настроек, выделяет энергию мощностью около одной четверти лошадиной силы вне зависимости от того, в какой точке пространства, ограниченного первичными контурами, она находится. На протяжении последних лет я часто был вынужден демонстрировать эксперименты на публике, однако, при всем моем желании и далее откликаться на подобного рода предложения, необходимость продолжить интенсивную работу, вынуждает меня отвечать отказом. И это принесло свои плоды: медленное, но устойчивое улучшение деталей аппарата, которые, надеюсь, в ближайшем будущем я смогу описать во всех подробностях.

Однако могут возникать и довольно необычные электродинамические эффекты, которые, как я уже отмечал ранее, могут усиливаться при усилении поля в очень малом пространстве. Известно, и это также отмечалось ранее, что если поддерживать электродвижущую силу величиной в несколько тысяч вольт между двумя точками токопроводящего бруска или петли длиной всего лишь в несколько дюймов, то в проводниках, расположенных рядом с ними, возникает электродвижущая сила примерно той же величины. И действительно, я обнаружил, что вполне возможно передавать таким способом электрический разряд в лампе, внутри которой вакуум. Несмотря на то, что необходимая величина электродвижущей силы составляла от десяти до двадцати тысяч вольт, в течение долгого времени я проводил эксперименты в этом направлении с целью добиться получения света новым, более экономичным способом. Но результаты испытаний не оставили сомнений в том, что такой способ освещения требует огромных энергетических затрат. Имея в своем распоряжении только мой аппарат, я сосредоточил свои усилия именно в этом направлении: поиске другого метода передачи электрической энергии. Спустя некоторое время (в июне 1891 г.) профессор Дж. Томсон описал эксперименты, которые были очевидным итогом длительных исследований, и предоставил много новой и интересной информации. Это побудило меня вернуться к изысканиям в этой области и продолжить свои эксперименты. Вскоре все мои усилия были сконцентрированы на получении в малом пространстве индуктивного поля наибольшей интенсивности. Постепенно внося усовершенствования в аппарат, я добился удивительных

L-164

результатов. Например, если конец тяжелого железного бруска поместить в контур, находящийся под высоким напряжением, то в течение несколько секунд брусок нагревается до высокой температуры. Даже тяжелые куски других металлов нагревались так быстро, как будто их помещали в печь. Когда поместили в контур свернутый в трубочку кусок оловянной пластины, то металл полностью оплавился. Это было сравнимо со вспышкой и не удивительно, что фрикционные потери, сконцентрированные в нем, возможно, достигали величины в десять лошадиных сил. Подобным же образом вели себя и многие другие токопроводящие материалы. А когда в контур поместили стеклянный сосуд, из которого был откачан воздух, то за несколько секунд стекло нагрелось почти до точки плавления.

Когда я впервые наблюдал это удивительное зрелище, я заинтересовался воздействием этого эффекта на живую ткань. Разумеется, я принял все, какие мог меры предосторожности, так как был осведомлен, что контуре диаметром всего несколько дюймов возникает электродвижущая сила величиной более чем в десять тысяч вольт, и такого напряжения более чем достаточно для того, чтобы вызвать ток, разрушающий живую ткань. Это доказывалось еще и тем, что предметы, обладающие сравнительно низкой электропроводностью, быстро нагревались и даже частично разрушались. Можете представить себе мое удивление, когда я обнаружил, что могу поместить руку, или другую часть своего тела в контур и удерживать ;ее там без какого-либо ущерба для себя. Побуждаемый желанием сделать новые и полезные наблюдения, я неоднократно с готовностью и бессознательно проводил эксперименты, сопряженные с некоторым риском, которого едва ли можно избежать в лабораторных работах. И хотя я всегда полагал, и пребываю в этой уверенности до сих пор, что никогда не предпринимал ничего более опасного, способного нанести вред моему здоровью, нежели то, что я поместил свою голову в пространство, где действовали столь разрушительные силы. Когда; я сделал это, то ничего не почувствовал, затем повторил еще и еще раз — результат остался прежним. Но я твердо убежден, что проводить такой эксперимент чрезвычайно опасно, и если кто-либо зайдет в своих действиях хотя бы на шаг дальше меня, то вполне может причинить себе серьезный вред. Однако при определенных условиях может происходить то, что в схожей ситуации наблюдалось с вакуумной лампой. Если ее поместить в поле контура, находящегося под высоким напряжением, но слишком длинного, то ток при этом не образуется и лампа остается холодной и практически не потребляет энергию. Но в момент первого же изменения тока, большая часть энергии колебаний устремится к точке потребления. Если в результате каких-либо действий установится электропроводная цепь внутри живой ткани, или костях головы, то это неизбежно приведет к разрушению ткани и к смерти безрассудного экспериментатора. Такой способ убийства, если он окажется востребованным, должен быть абсолютно безболезненным. Однако почему же живая ткань остается неповрежденной в столь агрессивной среде? Можно сказать, что ток не проходит из-за сильной самоиндукции, продуцируемой массой с большой электропроводностью. Но это не аргумент, так как масса металла имеет значительно большую самоиндукцию и при этом нагревается. Тогда можно предположить, что причиной является высокое сопротивление ткани. Но и это не является причиной, поскольку все свидетельствует в пользу того, что живая ткань обладает достаточно хорошей электропроводностью, к тому же тела, обладающие примерно тем же сопротивлением, нагреваются до высокой температуры. Может быть причина безвредности осцилляции в отношение живой ткани кроется в ее в высшей степени специфическом нагревании. Но даже грубая количественная оценка результатов экспериментов, проведенных с другими телами, показывает, что эта точка зрения тоже ошибочна. Единственное правдоподобное объяснение, которое я мог бы предложить, заключается в том, что живая ткань является конденсатором. Только этим можно объяснить отсутствие вредного воздействия. Однако следует отметить, что как только образуется неоднородная цепь, к примеру, если взять в руки полосу металла и таким образом сформировать замкнутый контур, то становится ощутимым прохождение тока через руки и отчетливо проявляются другие физиологические эффекты. Разумеется, самое сильное поле возникает тогда, когда возбуждающий контур образован только одним витком проволоки, за исключением случаев, когда соединения составляют значительную часть всей длины цепи. В

L-165

этом случае экспериментатору следует установить минимально необходимое количество витков и ясно представлять себе, что он теряет при увеличении количества витков, и что приобретает от увеличения общей длины цепи. Необходимо понимать, что если возбуждающая катушка содержит значительное количество витков и имеет небольшую длину, то в этом случае могут преобладать эффекты электростатической индукции, а также между первым и последним витком может возникнуть большая разность потенциалов — сто тысяч вольт и более. Однако последний эффект присутствует всегда, даже если задействуется только один виток.

! Когда человек помещается внутрь такого контура, любые кусочки металла, какими бы маленькими они ни были, нагреваются до ощутимой температуры

Без сомнения, они и должны нагреваться — особенно, если сделаны из железа — находясь внутри живой ткани, что может представлять собой новый метод хирургического лечения. Возможно, таким образом можно будет стерилизовать раны, определять местонахождение и даже извлекать из тела металлические предметы, а также проводить другие хирургические операции.

Большинство из перечисленных результатов, а также многие другие, до сих пор рассматривающиеся как выдающиеся, стали возможны только благодаря использованию разряда конденсатора. Все это выглядит весьма правдоподобно, но даже среди тех, кто работает в этих областях, найдется немного специалистов, которые по достоинству оценили бы такой замечательный инструмент как конденсатор. Позвольте мне изложить идею этого эффекта. Возьмем некий конденсатор, достаточно маленький, чтобы он умещался в кармане, который при правильном использовании может создавать электрическое напряжение, при необходимости в сотни раз превосходящее то, что способны вырабатывать самые большие существующие электростатические машины. Либо возьмем тот же конденсатор и использовав его иным образом, получаем ток такой мощности, на фоне которого ток самого мощного |сварочного аппарата, выглядит незначительным. Те же, кто заражен популярными идеями получения напряжения с электростатических машин, а электрического тока с коммерческих трансформаторов, будут поражены данным заявлением — убедитесь в истинности сказанного, увидев все это собственными глазами. Добиться таких результатов довольно легко, поскольку конденсатор может разряжаться в течение очень короткого промежутка времени. Ничего похожего на эти свойства физической науке не известно. Ни сжатая пружина, ни аккумуляторная батарея, ни любо другое устройство, способное сохранять энергию, не может делать того, что может конденсатор. В противном случае, с их помощью уже были бы созданы вещи, которые кажутся нам сейчас недостижимыми. Наиболее близким по свойствам конденсатору является динамит. Но даже самый мощный взрыв этого соединения, не идет ни в какое сравнение с мощностью разряда конденсатора. Давление, которое образуется в результате детонации химического соединения, измеряется в десятках тонн на квадратный дюйм, а то, что может произойти в результате разряда конденсатора, может измеряться в тысячах тонн на квадратный дюйм. И если бы был изобретен химический состав, который взрывался бы так же быстро, как разряжается конденсатор в условиях, вполне реализуемых на сегодняшний день, то одной унции этого вещества было бы достаточно, чтобы вывести из строя самый большой линкор.

Инструмент, обладающий такими выдающимися свойствами, может найти себе достойное применение в повседневной жизни. Я давно в этом убежден, и прекрасно понимаю, что предстоит преодолеть немало трудностей, прежде чем будут заменены ныне используемые несовершенные средства передачи электрической энергии. А трудности эти весьма многочисленны. Сами конденсаторы, производимые промышленным способом, неэффективны, проводники — неэкономны, лучшая изоляция — неадекватная, а условия для наиболее эффективного преобразования трудно создать и поддерживать. Одна трудность, тем не менее, оказалась более серьезной, чем другие и обнаружилась в устройствах, используемых для управления зарядкой и разрядкой конденсаторов. Я обратил на нее внимание, когда впервые описывал данную систему передачи электрической энергии. Им недоставало эффективности и

L-166

!

надежности, что угрожало возникновением серьезным неприятностей, и тем самым существенно ограничивало возможности использование системы, лишая ее многих ценных свойств. В течение многих лет я пытался справиться с этой проблемой, и за все это время проверил множество таких устройств. Многие из них, поначалу казавшиеся достаточно хорошими, на деле оказались не такими. Неохотно согласившись, я вернулся назад к идее, над которой работал задолго до этого. Я заменил обычные щетки и сегменты коммутатора на жидкие контакты. При этом я столкнулся с большими трудностями, но годы работы в лаборатории не были потрачены напрасно, и мне сопутствовал успех. Сначала было необходимо заставить циркулировать жидкость, но делать это помпой было непрактично. Мне пришла в голову счастливая идея сделать помповое устройство составной частью прерывателя цепи, поместив и то и другое в кожух, чтобы предотвратить окисление. Далее я представил себе простой способ поддерживания циркуляции, такой как вращение тела ртути. Затем я понял, (как можно уменьшить износ и потери, которые все еще было немало.

Я опасаюсь, что это изложение, описывающее то, как много усилий тратилось на кажущиеся незначительными детали, не передает основную мысль, которую я хотел бы донести до Вас. Вынужден признать, что мое терпение находилось на пределе. Наконец, я был удовлетворен получившимся устройством, которое оказалось простым и надежным в эксплуатации, которое практически не требовало к себе внимания, и было способно эффективно преобразовывать значительные объемы электрической энергии при хорошей экономичности. Это не самое лучшее, что можно было сделать, но вполне удовлетворительно, и я чувствую, что справился с этой труднейшей задачей.

Теперь врачи смогут получить инструмент, удовлетворяющий многим требованиям. Они смогут использовать его при электротерапии в большинстве из вышеперечисленных случаев. В комплект прибора будут входить несколько катушек, которые будут пригодны для любых целей. Прибор сможет выдавать любой ток и любое напряжение. Каждая такая катушка будет состоять всего из нескольких витков провода, поэтому затраты на их производство будут довольно незначительны. Прибор также позволит генерировать рентгеновские лучи значительно большей мощности, чем те которые вырабатываются обычным аппаратом. Трубка должна поставляться от тех изготовителей, которые обеспечивают качество продукции, и позволяют концентрировать большее количество энергии на электродах. Как только это будет сделано, никаких помех не окажется на пути всестороннего и эффективного использования этого прекрасного открытия, которое должно в конце концов найти себе применение не только в руках хирурга, но и электротерапевта, и что наиболее важно, бактериолога. I

Чтобы передать общую идею инструмента, в котором воплощены многие последние усовершенствования, я буду ссылаться на Рис. 9, иллюстрирующий основные части прибора. Показан вид сбоку и частично вид сверху в вертикальном поперечном разрезе. Расположение частей такое же, как и в предыдущих случаях. Только возбуждающая катушка с вибрирующим прерывателем заменена улучшенным прерывателем цепи, на который была сделана ссылка

Это устройство включает в себя литую форму Л с выступающей втулкой В, которая поддерживает свободно вращающийся вал а. На валу расположен якорь, помещенный в поле постоянного магнита М, а наверху находится полый железный шкив D, в котором и находится прерыватель цепи. Внутри вала a, концентрически по отношению к нему, установлен такой же, но меньшего размера вал Ь, также свободно вращающийся в шарикоподшипнике; и поддерживающий груз Е. Груз расположен с одной стороны, поэтому валы а и b отклонены от вертикали. Когда шкив вращается, груз остается неподвижным. Прикрепленное в грузу Е устройство R, выполненное в форме ковша с очень тонкими стенками, суженого на ближнем к шкиву конце, и расширеного на противоположном. Небольшое количество ртути помещено в шкив, который вращается против узкого конца ковша. При этом часть жидкости забрасывается тонкой и широкой струей к центру шкива. Верхняя часть последнего герметично закрыта железной шайбой. Эта шайба удерживает на стальном пруте L диск F, сделанный из того же металла, что и шайба, с помощью большого числа тонких скользящих контактов К. Прут] L

L-167

изолирован шайбами N от шкива, а для удобства заполнения ртутью предусмотрен маленький винт о. Болт L, представляющий собой одну из клемм прерывателя цепи, соединен медной полосой с первичным контуром р. Другой конец первичного контура ведет к одной из клемм конденсатора С, расположенного в отделении ящика Л. Другие отделения ящика зарезервированы для выключателя S и места под инструменты. Другая клемма конденсатора подключается к литой форме А и через нее к шкиву D. Когда шкив вращается, скользящие контакты К начинают быстро двигаться к и от контакта вместе с потоком ртути, тем самым быстро замыкая и размыкая цепь. Такое устройство легко может производить десять тысяч прерываний в секунду и даже больше. Вторичный контур состоит из двух отдельных катушек. Они расположены так, что могут выскальзывать, а полоса металла в середине соединяет их с первичным контуром. Это сделано для того, чтобы предохранить вторичный контур от поломки, когда одна из клемм перегружается, как это часто случается в работающих рентгеновских лампах. Катушка такой формы может выдерживать значительно большую разность потенциалов, чем обычная катушка.

Сфера и якорь двигателя изготовлены из пластин, что позволяет использовать двигатель в цепях как постоянного, так и переменного тока. Валы установлены как можно ближе к вертикали — в таком положении им требуется меньше смазки. Таким образом, единственная деталь, которая требует к себе некоторого внимания, — это коммутатор двигателя, однако, при наличии постоянного источника переменного тока, возможные проблемы отпадают сами собой.

Соединения цепи данного устройства уже были продемонстрированы, а режим работы описан в периодической печати. Обычный способ соединения отображен на Рис. 8, где А2А2

— клеммы питающей цепи, L — самоиндукционная катушка для повышения напряжения, которая последовательно соединена с конденсатором С и первичным контуром Р Р. Оставшиеся литеры обозначают соответствующие части устройства, изображенного на Рис.9.

I

НАУЧНЫЕ И ТЕХНИЧЕСКИЕ СТАТЬИ

1

ЯВЛЕНИЯ ПЕРЕМЕННЫХТОКОВ ОЧЕНЬ ВЫСОКОЙ ЧАСТОТЫ*

Журналы по электричеству становятся все более и более интересными. Каждый день наблюдаются новые факты и встают новые проблемы, овладевающие вниманием инженеров. В последних номерах английских журналов, особенно в Electrician, было поднято несколько новых вопросов, которые привлекли к себе более чем просто обычное внимание. Выступление Профессора Крукса оживило интерес к его красивым и искусно выполненным экспериментам, эффект, наблюдавшийся на электросетях Ферранти, побудил выразить свои мнения нескольких ведущих Английских электротехников, а М-р. Свинбурн указал на некоторые интересные моменты в связи с конденсаторами и возбуждением в динамо.

Собственные знания и опыт автора побудили его отважиться на некоторые замечания по этим и другим вопросам в надежде, что эти замечания дадут какую-нибудь полезную информацию читателю или наведут его на размышления.

Среди своих многочисленных экспериментов Профессор Крукс демонстрирует ряд опытов с трубками без внутренних электродов, и из его замечаний можно сделать вывод, что полученные с этими трубками результаты довольно необычны. Если это так, то автор должен выразить свои сожаления о том, что Профессор Крукс, чья превосходная работа восхитила каждого исследователя, не воспользовался в своих экспериментах машиной переменного тока, сконструированной должным образом, — а именно, такой, которая дает, скажем, 10,000 — 20,000 перемен тока в секунду. Тогда его исследования этого сложного но пленительного предмета были бы [гораздо] полнее. Конечно, это правда, что при использовании такой машины, подключенной к индукционной катушке, отличительные особенности электродов, — что во многих экспериментах если и не необходимо, то желательно, — теряются, и в большинстве случаев оба электрода ведут себя схожим образом. Но, с другой стороны, экспериментатор получает возможность произвольно усиливать эффекты. Когда используется вращающийся переключатель или коммутатор, достижимая частота переключений постоянного тока ограничена. Когда коммутатор вращается быстрее, первичный ток-ослабевает, а если ток увеличивать, то искрение, которое нельзя полностью преодолеть конденсатором, портит прибор. Ни одного из этих ограничений нет, если применять машину переменного тока, потому что можно достичь любой желаемой частоты изменения в первичном токе. Таким путем возможно получить чрезвычайно большую электродвижущую силу во вторичной цепи при относительно небольшом первичном токе, и помимо того, можно вполне полагаться на безупречную исправность работы прибора.

Попутно автор также отметит, что любой, кто будет пытаться сконструировать такую машину в первый раз, сможет потом написать целое сказание о своих мытарствах. Само собой разумеется, он сначала начнет делать якорь с нужным количеством полярных выступов. После чего получит удовлетворение от того, что создал прибор, который вполне подойдет для аккомпанемента в опере Вагнера. Кроме того, он сможет по ходу дела овладеть добродетелью преобразования механической энергии в тепло почти что в совершенстве. Если будет обращение полярности полюсов, то он будет получать тепло от машины; если обращения не будет, нагрев

The Electrical World, 21 Февраля 1891 г.

А-4

будет меньше, но и выхода почти не будет. Он после этого откажется от железа в якоре, и попадет от Сциллы к Харибде. Он будет ожидать одной трудности, а сталкиваться с другой, но после нескольких попыток он сможет получить почти то, что хотел.

Среди большого числа экспериментов, которые можно провести с такой машиной, не последний интерес представляют опыты с индукционной катушкой высокого напряжения. Характер разряда полностью меняется. Дуга устанавливается на гораздо больших расстояниях, и на нее столь легко влияет самый слабый поток воздуха, что часто она извивается самым причудливым образом. Она обычно издает ритмический звук, свойственный дугам переменного тока, но любопытно, что этот звук можно слышать при числе перемен намного выше десяти | тысяч в секунду, что многими считается [приблизительной] границей слышимости. Катушка во многих отношениях ведет себя как статическая машина. Острия существенно уменьшают ее разрядный промежуток, потому что электричество свободно стекает с них, а от присоединенного к одной из клемм провода исходят потоки света, как если бы он был соединен с полюсом мощной машины Теплера. Все эти явления возникают, безусловно, главным образом благодаря получаемой огромной разности потенциалов. Вследствие самоиндукции катушки и высокой частоты ток незначителен, тогда как напряжения соответствующий рост есть. Импульс тока определенной силы, начавшийся в такой катушке, продолжает течь не менее четырех десятитысячных секунды. Поскольку это время больше, чем половина периода, то получается, что противоположная электродвижущая сила начинает действовать в то время, пока ток еще течет. И как следствие этого, напряжение растет как давление в заполненной жидкостью трубе, которая быстро вибрирует относительно своей оси. Ток настолько мал, что, по мнению и невольному опыту автора, разряд даже очень большой катушки не может причинить скольконибудь серьезного вреда, тогда как в случае, если та же самая катушка будет работать под током меньшей частоты, то, хотя электродвижущая сила и будет гораздо меньше, разряд ее будет несомненно весьма вредоносным. Этот эффект, однако, лишь частично обусловлен высокой частотой. Опыт автора говорит о том, что чем больше частота, тем больше количество | электрической энергии, которое может пройти через тело человека без серьезного дискомфорта; откуда представляется необходимым вывод, что человеческие ткани действуют как конденсаторы.

Экспериментатор не вполне готов к поведению катушки, подсоединенной к Лейденской банке. Он, конечно, ожидает, что из-за высокой частоты емкость банки должна быть маленькой. Поэтому он берет очень маленькую банку, размером примерно с небольшой стакан для вина, но обнаруживает, что даже с такой банкой катушка практически оказывается замкнутой накоротко. Тогда он уменьшает емкость, пока не доходит приблизительно до емкости двух сфер, скажем, десяти сантиметров в диаметре и на расстоянии два — четыре сантиметра. Тогда разряд принимает форму зазубренной ленты, которая выглядит в точности как последовательность искр, наблюдаемая в быстро вращающемся зеркале; зубцы, конечно, соответствуют разрядам конденсатора. В этом случае экспериментатор может наблюдать странный эффект. Разряд начинается в ближайших [друг к другу] точках, постепенно нарастает, прерывается где-то в районе верха сфер, начинается вновь внизу и так далее. Это происходит так быстро, что несколько зазубренных лент видны одновременно. Это может озадачить на несколько минут, но объяснение достаточно просто. Разряд начинается в ближайших точках, воздух нагревается и поднимает дугу вверх, пока она не прервется, тогда! она вновь устанавливается в ближайших точках, и т.д. Поскольку ток легко проходит через конденсатор малой емкости, естественным будет то, что подсоединение только одного контакта к телу того же размера, не важно насколько хорошо изолированного, заметно уменьшает расстояние пробоя дуги.

Отдельный интерес представляют опыты с трубами Гейсслера. Откачанная трубка, не содержащая в себе каких-либо электродов, на некотором расстоянии от катушки будет светиться. Если трубка от вакуумного насоса идет рядом с катушкой, то весь насос ярко светится. Поднесенная к катушке лампа накаливания начинает светиться и ощутимо нагревается. Если контакты лампы подсоединены к одной из клемм катушки, и к колбе лампы

А-5

приблизить руку, то возникает очень любопытный и весьма неприятный разряд от стекла к руке, при этом нить [лампы] может раскалиться. Этот разряд в определенной степени сходен с потоком, исходящим от пластин мощной машины Тэплера, но несравненно больше по величине. Лампа в этом случае работает как конденсатор, разреженный газ является одной обкладкой, а рука человек — другой. Когда колбу лампы берут в руку и приближают металлические контакты или приводят их в контакт с проводником, соединенным с катушкой, уголь ярко раскаляется и стекло быстро нагревается. Со 100-вольтовой лампой в 10 свечей можно без особых неудобств выдержать ток, достаточный для того, чтобы лампа ярко засветилась; но продержать ее в руке можно только несколько минут, потому что стекло разогревается за необычайно короткое время. Когда трубка загорается при приближении ее к катушке, ее можно погасить, если поместить металлическую пластину в руке между катушкой и трубкой; но если металлическую пластину закрепить на стеклянной палочке или еще как-нибудь изолировать, трубка будет продолжать светиться и тогда, когда внесут пластину, или даже может начать светиться еще ярче. Этот эффект зависит от положения пластины и трубки относительно катушки, и его легко предсказать, предположив, что имеет место проводимость между одним контактом катушки и другим. В зависимости от положения пластины она может или отводить ток от трубки, или направлять его к ней.

В другом направлении своей работы автор часто во время экспериментов заставлял лампы накаливания на 50 и 100 вольт гореть с любой [световой] силой, когда оба контакта каждой лампы подключались к толстому медному проводу длиной не более нескольких футов. Эти эксперименты представляются достаточно интересными, но не более, чем тот странный эксперимент Фарадея, воскрешенный и много раз исполненный недавними исследователями, в котором разряд заставляют бить между двумя концами согнутого медного провода. Этот эксперимент можно повторить и здесь, что представляется столь же интересным. Когда трубку Гейсслера, контакты которой соединены медным проводом, подносят к катушке, определенно никто не будет готов увидеть, что трубка начнет светиться. Достаточно любопытно, что она светится, и еще более того, что провод особенного влияния не оказывает. В первый момент можно подумать, что к этому явлению какое-то отношение имеет сопротивление провода. Но конечно же, это сразу отклоняется, потому что для этого нужна огромная частота. Этот эффект кажется загадочным только сначала; поразмыслив, становится достаточно ясно, что провод особой разницы не делает. Это можно объяснить более чем одним способом, но вероятно наилучшим образом согласуется с наблюдениями то предположение, что присутствует проводимость от контактов катушки через пространство. При этом предположении, если трубку с проводом держать в любом положении, то провод может отбирать не намного более, чем тот ток, который течет через пространство, занятое проводом и металлическими контактами трубки; через прилегающее пространство ток течет практически без возмущения. По этой причине, если трубку держать в любом положении под прямыми углами к линии, соединяющей клеммы катушки, провод вообще вряд ли оказывает какое-либо влияние, но в положении более или менее параллельном этой линии он до определенной степени влияет на яркость трубки и ее способность загораться. Исходя из того же предположения можно объяснить и многие другие явления. В частности, если концы трубки снабдить щетками достаточной величины и держать на линии, соединяющей контакты катушки, она не загорается, и тогда почти весь ток, который иначе бы тек однородно через пространство между щетками, отводится через провод. Но если трубку в достаточной степени наклонить по отношению к этой линии, она загорается несмотря на щетки. Также, если металлическую пластину закрепить на стеклянной палочке и держать под прямыми углами к линии, соединяющей клеммы, и ближе к одному из них, то трубка, расположенная более или менее параллельно этой линии, мгновенно загорится, когда один из контактов коснется пластины, и погаснет, когда [контакт] отделится от пластины. Чем больше размер пластины, до определенного предела, тем легче трубка загорается. Когда трубка располагается под прямыми углами к линии, соединяющей клеммы, а

А-6

потом поворачивается, ее яркость растет, пока она не станет параллельна этой линии. Автор должен, однако, отметить, что он не поддерживает идею утечки или тока через пространство более, чем как удобное объяснение, потому что убежден, что все эти эксперименты не могли бы быть выполнены со статической машиной, дающей постоянную разность потенциалов, и что большое отношение к этим явлениям имеет эффект конденсатора.

При работе с катушкой Румкорфа с быстро меняющимися токами следует принять определенные предосторожности. Первичный ток не следует включать слишком надолго, иначе катушка может стать настолько горячей, что расплавит гуттаперча или парафин, или еще какнибудь повредит изоляции, и это может произойти на удивление быстро, учитывая силу тока. При включенном первичном токе контакты обмотки тонкого провода можно соединять без особого риска, поскольку сопротивление настолько велико, что трудно вызвать ток через тонкую обмотку, достаточный, чтобы как-либо его повредить, и на самом деле, катушка в целом I может находиться в гораздо большей безопасности, когда контакты тонкого провода | соединены, нежели когда они изолированы; однако особенно осторожным надо быть, когда контакты подключаются к Лейденской банке, потому что где-нибудь в районе критической емкости, которая противодействует самоиндукции при существующей частоте, катушку может постигнуть судьба Св. Поликарпа. Если дорогой вакуумный насос начинает светиться, находясь вблизи катушки или касаясь провода, подключенного к одному из контактов, ток можно оставить только на несколько кратких моментов, иначе стекло потрескается из-за нагревания разреженного газа в одном из узких мест — по собственному опыту автора quod crat demonstrandum'.

Есть много других интересных моментов, которые можно наблюдать в связи с такой машиной. Эксперименты с телефоном, проводником в сильном поле или с конденсатором или дугой, свидетельствуют о том, что можно воспринимать звуки далеко за верхними пределами общепринятых пределов слышимости. Телефон издает ноты [с частотами] от двенадцати до тринадцати тысяч колебаний в секунду, далее начинает сказываться неспособность сердечника следовать столь быстрым переменам. Однако, если магнит и сердечник заменить конденсатором, а контакты подсоединить к высоковольтной вторичной обмотке трансформатора, все еще будет слышно более высокие ноты. Если ток направить вокруг тонко покрытого сердечника и аккуратно держать небольшой кусочек тонкого листа железа непосредственно вблизи сердечника, звук еще можно слышать при количестве перемен от тринадцати до четырнадцати тысяч в секунду, если ток достаточно сильный. Помимо этого, небольшая катушка, плотно втиснутая между полюсами мощного магнита, будет при вышеуказанном количестве перемен издавать звук, а дуги можно слышать и при более высокой частоте. Предел слышимости оценивается разными способами. В работах Сэра Томпсона гдето указывается, что предел — это десять тысяч в секунду или около того. Другие, но менее надежные, источники определяют его как двадцать четыре тысячи в секунду. Описанные выше эксперименты убедили автора, что звуки с несравненно более высоким числом вибраций в секунду можно было бы воспринять, если бы их можно было произвести с достаточной мощностью. Нет никакой причины, по которой это не должно было бы быть так. Уплотнения и разрежения воздуха обязательно вызовут соответствующую вибрацию диафрагмы, и это вызовет определенное ощущение, какова бы ни была — конечно, в определенных пределах, — скорость передачи сигнала к нервным центрам, хотя вполне вероятно, что ухо по бедности опыта не будет способно различить такие звуки. С глазом дело обстоит по-другому; если чувство зрения, как многие считают, основано на некотором эффекте резонанса, никакое количественное увеличение интенсивности эфирной вибрации не сможет расширить наши границы видимости в любую из сторон спектра.

') Что и требовалось доказать (лат. - пп.) - Думаю, нужно отметить, что хотя индукционная катушка может дать довольно хороший результат при работе со столь быстро переключающимися переменными токами, тем не менее ее конструкция, почти безотносительно к железному сердечнику, делает ее весьма непригодной для столь высоких частот, и для получения лучших результатов конструкцию следует сильно модифицировать.

(прим.авт.)