Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
40
Добавлен:
02.05.2014
Размер:
4.9 Mб
Скачать

Рис.2. Ядро сечения для многоугольной формы поперечного сечения

Таким образом координаты и точки приложения силы Р связаны линейно. При

вращении нейтральной оси около постоянной точки В точка А приложения силы движется по прямой. Обратно, перемещение силы Р по прямой связано с вращением нейтральной оси около постоянной точки.

На Рис.3 изображены три положения точки приложения силы на этой прямой и соответственно три положения нейтральной оси. Таким образом, при многоугольной форме контура сечения очертание ядра между точками, соответствующими сторонам многоугольника, будет состоять из отрезков прямых линий.

Рис.3. Динамика построения ядра сечения

Если контур сечения целиком или частично ограничен кривыми линиями, то построение границы ядра можно вести по точкам. Рассмотрим несколько простых примеров построения ядра сечения.

При выполнении этого построения для прямоугольного поперечного сечения воспользуемся полученными формулами.

Для определения границ ядра сечения при движении точки А по оси Оу найдем то значение , при котором нейтральная ось займет положение Н1О1. Имеем:

откуда

Таким образом, границы ядра по оси Оу будут отстоять от центра сечения на 1/6

величины b (Рис.4, точки 1 и 3); по оси Oz границы ядра определятся расстояниями (точки 2 и 4).

Для получения очертания ядра целиком изобразим положения нейтральной оси и , соответствующие граничным точкам 1 и 2.

При перемещении силы из точки 1 в точку 2 по границе ядра нейтральная ось должна

перейти из положения в положение , все время касаясь сечения, т. е. поворачиваясь вокруг точки D.

Рис.4. построение ядра для прямоугольного сечения.

Для этого сила должна двигаться по прямой 1 — 2. Точно так же можно доказать, что остальными границами ядра будут линии 2—3, 3—4 и 4—1.

Таким образом, для прямоугольного сечения ядро будет ромбом с диагоналями, равными одной трети соответствующей стороны сечения. Поэтому прямоугольное сечение при расположении силы по главной оси работает на напряжения одного знака, если точка приложения силы не выходит за пределы средней трети стороны сечения.

Рис.5. Динамика изменения напряжений при изменении эксцентриситета.

Эпюры распределения нормальных напряжений по прямоугольному сечению при эксцентриситете, равном нулю, меньшем, равном и большем одной шестой ширины сечения, изображены на Рис.5.

Отметим, что при всех положениях силы Р напряжение в центре тяжести сечения

(точка О) одинаково и равно и что сила Р не имеет эксцентриситета по второй главной оси.

Для круглого сечения радиуса r очертание ядра будет по симметрии кругом радиуса

. Возьмем какое-либо положение нейтральной оси, касательное к контуру. Ось Оу расположим перпендикулярно к этой касательной. Тогда

Рис.6. Ядро сечения для двутавра — а) и швеллера — б)

Таким образом, ядро представляет собой круг с радиусом, вчетверо меньшим, чем радиус сечения.

Для двутавра нейтральная ось при обходе контура не будет пересекать площади поперечного сечения, если будет касаться прямоугольного контура ABCD, описанного около двутавра (Рис.6а). Следовательно, очертание ядра для двутавра имеет форму ромба, как и для прямоугольника, но с другими размерами.

Для швеллера, как и для двутавра, точки 1, 2, 3, 4 контура ядра (Рис.6 б) соответствуют совпадению нейтральной оси со сторонами прямоугольника ABCD.

Лекция № 29. Совместные действия изгиба и кручения призматического стержня

Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).

Рис.1. Расчетная схема изогнутого и скрученного вала

Примем следующий порядок расчета.

1. Разлагаем все внешние силы на составляющие

P1x, P2x,..., Pnx и P1y, P2y,..., Pny.

2.Строим эпюры изгибающих моментов My и My. от этих групп сил.

Укругового и кольцевого поперечного сечений все центральные оси главные, поэтому косого изгиба у вала вообще не может быть, следовательно, нет смысла в

каждом сечении иметь два изгибающих момента Mx, и My а целесообразно их заменить результирующим (суммарным) изгибающим моментом (рис. 2)

,

который вызывает прямой изгиб в плоскости его действия относительно нейтральной оси п—п, перпендикулярной вектору Мизг. Эпюра суммарного момента имеет пространственное очертание и поэтому неудобна для построения и анализа. Поскольку все направления у круга с точки зрения прочности равноценны, то обычно эпюру Мизг спрямляют, помещая все ординаты в одну (например, вертикальную) плоскость. Обратим внимание на то, что центральный участок этой эпюры является нелинейным.

Рис.2. Формирование результирующего изгибающего момента

3. Строится эпюра крутящего момента Мz.

Наибольшие напряжения изгиба возникают в точках k и k/, наиболее удаленных от нейтральной оси (рис. 3),

.

где Wизг — момент сопротивления при изгибе.

В этих же точках имеют место и наибольшие касательные напряжения кручения

,

где Wрмомент сопротивления при кручении.

а) эпюры напряжений б) распределение напряжений Рис.3. Напряженное состояние вала:

Как следует из рис. 3, напряженное состояние является упрощенным плоским (сочетание одноосного растяжения и чистого сдвига). Если вал выполнен из пластичного материала, оценка его прочности должна быть произведена по одному из критериев текучести. Например, по критерию Треска—Сен-Венана имеем

.

Учитывая, что Wр=2 Wизг, для эквивалентных напряжений получаем

,

где —эквивалентный момент, с введением которого задача расчета вала на совместное действие изгиба и кручения, сводится к расчету на эквивалентный изгиб.

Аналогично для Мэкв по.критерию Губера—Мизеса получаем

Тогда условие прочности для вала из пластичного материала будет иметь вид

.

Для стержня из хрупкого материала условие прочности следует записать в виде

,

где Мэкв должен быть записан применительно к одному из критериев хрупкого разрушения. Например, по критерию Мора

где .

Обратим внимание на особенности расчета при сочетании изгиба, растяжения и кручения стержня прямоугольного поперечного сечения (рис. 4.) Для выявления опасной точки здесь должны быть сравнены напряжения косого изгиба с растяжением в точке А, с эквивалентными напряжениями в точках В и С.

Рис.4. Модель расчета напряжений при сочетании кручения, растяжения и изгиба.

Полученные соотношения приобретают крайнюю необходимость и востребованность при выполнении Вами курсового проекта по основам конструирования при расчете на прочность и жесткость валов передач.

Лекция № 30. Расчет балок переменного сечения.

Подбор сечений балок равного сопротивления.

Все предыдущие расчеты относились к балкам постоянного сечения. На практике мы имеем часто дело с балками, поперечные размеры которых меняются по длине либо постепенно, либо резко.

Ниже рассмотрено несколько примеров подбора сечения и определения деформаций балок переменного профиля.

Так как изгибающие моменты обычно меняются по длине балки то, подбирая ее сечение по наибольшему изгибающему моменту, мы получаем излишний запас

материала во всех сечениях балки, кроме того, которому соответствует . Для экономии материала, а также для увеличения в нужных случаях гибкости балок применяют балки равного сопротивления. Под этим названием подразумевают балки, у которых во всех сечениях наибольшее нормальное напряжение одинаково и должно быть равно допускаемому.

Условие, определяющее форму такой балки, имеет вид

и

Здесь М(х) и W(x) — изгибающий момент и момент сопротивления в любом сечении балки; W(х) для каждого сечения балки должен меняться пропорционально изгибающему моменту.

Эти условия справедливы и для сечения с наибольшим изгибающим моментом; если обозначить — момент сопротивления балки в сечении с наибольшим изгибающим моментом , то можно написать:

(1)

Покажем ход вычислений на примере. Рассмотрим балку пролетом l, защемленную концом А и нагруженную на другом конце силой Р (Рис.1). Выберем сечение этой балки в виде прямоугольника; задачу о надлежащем изменении момента сопротивления можно решать, меняя высоту или ширину балки или тот и другой размер вместе.

Рис.1. Расчетная схема балки равного сопротивления

Пусть высота балки будет постоянной , а ширина переменной— . Момент сопротивления в сечении на расстоянии х от свободного конца будет , а

изгибающий момент ; момент сопротивления опорного сечения , a

наибольший изгибающий момент в опорном сечении . В расчете имеют значения лишь абсолютные величины М(х) и

По формуле (1) получаем:

откуда

т. е. ширина меняется по линейному закону в зависимости от х. При ширина равна

.

Вид балки в фасаде и плане показан на Рис.1. Такое очертание балки получается, если учитывать ее прочность только по отношению к нормальным напряжениям;

ширина в сечении В обращается в нуль.

Однако необходимо обеспечить прочность и по отношению к касательным напряжениям. Наименьшая ширина балки, требуемая этим условием, определится из уравнения

или, так как

Таким образом, исправленное очертание балки предопределяет минимальный размер ширины и утолщение свободного края консоли.

Определение деформаций балок переменного сечения.

При определении прогибов и углов поворота для балок с переменным сечением надлежит иметь в виду, что жесткость такой балки является функцией от х. Поэтому дифференциальное уравнение изогнутой оси принимает вид

где J(x) — переменный момент инерции сечений балки.

До интегрирования этого уравнения можно выразить J(x) надлежащей подстановкой

через J, т. е. через момент инерции того; сечения, где действует ; после этого вычисления производятся так же, как и.для балок постоянного сечения.

Покажем это на примере, разобранном выше. Определим прогиб балки равного сопротивления, защемленной одним концом, нагруженной на другом конце силой Р и имеющей постоянную высоту. Начало координат выберем на свободном конце балки.

Тогда

Дифференциальное уравнение принимает вид:

Интегрируем два раза:

Для определения постоянных интегрирования имеем условия: точке А при прогиб и угол поворота или

Соседние файлы в папке Лекции по сопромату2