
- •Оглавление
- •Введение.
- •Тепловые двигатели и история создания гту
- •Принятые сокращения
- •1 Принципиальные схемы газотурбинных установок
- •1.1 Газоперекачивающий агрегат: состав, виды приводов и систем гту
- •1.2 Принципиальные схемы гту, их преимущества и недостатки
- •Принципиальные схемы гту.
- •1.3 Основы термодинамики, теплотехники и рабочие процессы гту. Циклы гту в координатах р-V, t-s диаграммах.
- •Энтальпия.
- •Энтропия.
- •2 Осевые турбомашины
- •2.1 Осевой компрессор, назначение, типы. Состав. Газовая динамика осевого компрессора
- •Конструкция лопатки.
- •Опоры (подшипники) ротора.
- •Лабиринтные уплотнения.
- •Газовая динамика осевого компрессора.
- •2.2 Газовая турбин, назначение, классификация по принципам работы. Основные узлы. Режимы работы. Газовая динамика турбины Газовая турбина.
- •Охлаждение деталей турбины.
- •Газовая динамика турбины.
- •2.3 Система запуска гту. Валоповоротные устройства (впу). Валоповоротное устройство.
- •Работа валоповоротного устройства двигателя гтк-10-4.
- •2.4 Турбодетандер. Назначение и режимы работы Турбодетандер гтк-10-4.
- •Работа турбодетандера и управление кранами на пусковом газе.
- •3. Топливная система гту
- •3.1 Назначение топливной системы и основные функции.
- •3.2 Горение топлива газотурбинных установок. Физические и химические процессы.
- •Горение газообразного топлива
- •3.3 Камера сгорания. Назначение, типы, коэффициент избытка топлива. Основные узлы кс и рабочие процессы. Камера сгорания.
- •Типы камер сгорания.
- •Основные узлы камеры сгорания:
- •3.4 Системы топливного, пускового и импульсного газа. Назначение, состав, рабочие параметры.
- •3.5 Способы регулирования гту.
- •3.6 Совмещенная характеристика ок и гт (одновальная)
- •4. Маслосистема газотурбинной установки.
- •4.1 Система маслоснабжения гту, назначение, функции и состав.
- •5 Центробежный нагнетатель
- •5.1 Назначение, типы, состав
- •Состав нагнетателя.
- •Повышение давления в центробежном колесе.
- •Принцип повышения давления в центробежном колесе
- •5.2 Рабочая характеристика нагнетателя, характерные точки и зоны. Пуск нагнетателя
- •2. Критическая точка с зоной помпажа.
- •4. Нулевая точка.
- •5. Зона низких степеней сжатия
- •Пуск нагнетателя
- •6 Конструкция газотурбинного двигателя гтк -10-4
- •6.1 Технические данные гтк-10-4, основные узлы
- •6.2 Блок турбогруппы: компрессор, передний блок, турбины, рама-маслобак, подшипник силового ротора.
- •Осевой компрессор
- •Передний блок
- •Вкладыши ротора турбокомпрессора
- •Средний подшипник
- •Переднее лабиринтное уплотнение
- •Заднее лабиринтное уплотнение.
- •Сбросные клапаны
- •Рама – маслобак
- •Турбины твд и тнд
- •Корпус турбин
- •Передняя часть корпуса
- •Диффузор
- •Выхлопные патрубки
- •Диафрагма с уплотнением
- •Обойма направляющих лопаток турбины
- •Диск турбины высокого давления
- •Ротор силовой турбины
- •Переднее уплотнение турбины
- •Уплотнение силовой турбины
- •Подшипник силового ротора
- •Вкладыши подшипника силового ротора
- •Импеллер
- •Муфта зубчатая
- •Воздухоподогреватель
- •6.3 Камера сгорания
- •6.4 Маслосистема гтк-10-4 Назначение системы маслоснабжения
- •Работа системы
- •Параметры работы системы
- •Узлы системы маслоснабжения Главный маслонасос
- •Инжектор главного маслонасоса
- •Пусковой маслонасос смазки
- •Сдвоенный обратный клапан
- •Регулятор давления "после себя"
- •Маслоохладитель
- •Фильтр масляный
- •Резервный маслонасос смазки
- •Система отсоса масляных паров
- •Рама-маслобак
- •6.5 Система автоматического регулирования и защиты
- •Функции системы автоматического регулирования
- •Состав системы автоматического регулирования
- •Воздушные связи
- •Устройство системы регулирования
- •Агрегаты (назначение, конструкция, принцип работы). Регулятор скорости.
- •Принцип работы.
- •Стопорный клапан
- •Принцип работы
- •Регулирующий клапан
- •Принцип работы
- •Ограничитель приемистости
- •Принцип работы
- •Выпускной воздушный клапан
- •Принцип работы.
- •Отсечной золотник
- •Регулирующее устройство турбодетандера
- •Принцип работы регулирующего устройства.
- •Принцип работы.
- •Импеллер
- •Принцип работы
- •Реле осевого сдвига
- •Принцип работы
- •Автоматы безопасности
- •Реле давлении воздуха
- •Принцип работы
- •Золотник с электромагнитным приводом малоинерционного регулятора температуры (мирт).
- •Предпусковое состояние системы регулирования
- •Работа системы регулирования при пуске турбины
- •Работа системы регулирования при поддержании заданной скорости силового вала
- •Работа системы регулирования при остановке турбины
- •7 Техническая эксплуатация гтк-10-4
- •7.1 Система технического обслуживания и ремонта гпа.
- •Регламент технического обслуживания
- •7.2 Особенности эксплуатации гтк-10-4 при отрицательных температурах
- •7.3 Очистка ок в процессе эксплуатации
- •7.4 Пути совершенствования гту
- •7.5 Современные гпа применяемые на компрессорных станциях.
- •Газотурбинная установка гту-16п
- •Агрегат газоперекачивающий
- •Агрегат газоперекачивающий
- •Литература
Энтальпия.
Произведение PV можно отождествлять с работой, которую следует совершить, чтобы число некоторого объема V ввести в пространство с давлением P. Сумма внутренней энергии и потенциальной энергии давления называется энтальпией (теплосодержанием) H.
H=U+PV,
где |
H |
– |
энтальпия, |
|
P |
– |
давление, |
|
V |
– |
объем системы, |
|
U |
– |
внутренняя энергия. |
Этот параметр характеризует энергоемкость рабочего тела. Чем выше энтальпия, тем большую энергию можно получить от каждого килограмма рабочего тела, например, пара или газа.
Энтропия.
Отношение количества
подведенной (или отведенной) на данном
участке теплоты к температуре рабочего
тела
называется приведенной
теплотой.
Приведенная теплота считается
положительной при теплоподводе и
отрицательной, - при теплоотводе. В курсе
термодинамики доказывается, что для
любого цикла сумма приведенных количеств
теплоты оказывается равно 0. Это
обстоятельство дает основание считать
мерой изменения некоторой функции
состояния, называется энтропией
S
Понятие энтропии позволяет ввести чрезвычайно удобную для анализа тепловых двигателей диаграмму состояния, в которой по абсциссе откладывают энтропию, а по ординате абсолютную температуру.
Рис. 8. График изменения энтропии и температуры рабочего тела
Энтропия зависит только от двух параметров состояния газа (T и V) и не зависит от пути перехода газа из одного состояния в другое.
Энтропию, отнесенную к 1 кг газа, называют удельной энтропией газа, обозначается через S и выражается в Дж/0К.
Каждому состоянию газа соответствуют свои параметры T, V, P.
Рис. 9. Диаграммы циклов в координатах P-V и T-S
1-2 – сжатие воздуха от Р1 до Р2 – адиабата;
2-3 – подвод тепла q1 при постоянном давлении (изобара);
3-4 – расширение рабочего тела (воздух + продукты сгорания) в газовой турбине и реактивном сопле (адиабата):
от точки 3 до точки b – отдача работы в турбине,
от точки b до точки 4 – ускорение потока в сопле;
4-1 – изобара при давлении, равном атмосферному
Рис. 10. Диаграмма с регенерацией тепла в координатах P-V
P=const.
1-2 – сжатие воздуха в компрессоре (изотермический или адиабатический);
2-3 – изобарный подогрев воздуха в регенераторе;
3-4 – изобарный процесс подвода тепла в КС;
4-5 – расширение газа (адиабата) в турбине;
5-6 – изобарное охлаждение выхлопных газов;
6-1 – замыкающий цикл условного изобарного процесса.
Степень регенерации σ – отношение тепла полученного рабочим телом в регенераторе к теплу необходимому для его нагрева до температуры отработанных газов.
Рис. 11. Тепловая схема ГТК-10-4 в координатах T-S
Точки T1 = 150С; T2 = 1980С; T3= 4140С; T4= 7800С; T5= 5070С
Вопросы для самопроверки:
Рассказать «начала» термодинамики.
Что является параметрами состояния для газа?
Какие виды термодинамических процессов бывают?
Что такое энтальпия?
Что такое энтропия?