
- •Глава 1. Электростатика
- •Глава 2. Постоянный ток
- •Глава 3. Электромагнетизм и электромагнитная индукция
- •Глава 4. Однофазный переменный ток
- •Глава 5. Трехфазная система переменного тока
- •Глава 6. Электрические измерительные приборы и измерения
- •66. Общие сведения
- •Глава 7. Трансформаторы стр. 119.
- •Глава 8. Асинхронные двигатели
- •Глава 9. Синхронные машины
- •Глава 10. Машины постоянного тока
- •Глава 11. Электрическая аппаратура управления и защиты
- •Глава 12. Производство, передача и распределение электрической энергии
- •Глава 13. Электровакуумные приборы
- •Глава 14. Газорязрядные приборы
- •Глава 15. Полупроводниковые приборы
- •Глава 1
- •§ 1. Понятие об электронной теории строения вещества
- •§2. Взаимодействие зарядов. Закон кулона
- •§ 3. Электризация тел
- •§ 4. Электрическое поле
- •§ 5. Потенциал
- •§ 6. Напряженность поля
- •§ 7. Понятие об электрическом токе
- •§ 8. Проводники и диэлектрики
- •§ 9. Электрическая емкость. Конденсаторы
- •§ 10. Заряд и разряд конденсатора
- •§11. Соединения конденсаторов
- •§ 12. Понятие об электроискровом способе обработки металлов
- •Контрольные вопросы
- •Глава II
- •Постоянный ток
- •§ 13. Электрическая цепь постоянного тока
- •§ 14. Электродвижущая сила
- •§ 15. Электрическое сопротивление
- •§ 16. Закон ома
- •§ 17. Последовательное соединение сопротивлений
- •§ 18. Первый закон кирхгофа
- •§ 19. Параллельное соединение сопротивлений
- •§ 20. Смешанное соединение сопротивлений
- •§ 21. Второй закон кирхгофа
- •§ 22. Работа и мощность электрического тока
- •§ 23. Коэффициент полезного действия или отдача
- •§ 24. Закон ленца —джоуля
- •§ 25. Нагревание проводников электрическим током
- •§ 26. Электрическая дуга
- •§ 27. Химическое действие электрического тока
- •§ 28. Гальванические элементы
- •§ 29. Аккумуляторы
- •§ 30. Атомные элементы
- •§ 31. Термоэлементы
- •§ 32. Солнечные батареи
- •Глава III
- •Электромагнетизм
- •И электромагнитная индукция
- •§ 33. Общие сведения
- •§ 34. Магнитное поле электрического тока
- •§ 35. Понятие о природе магнетизма
- •§ 36. Магнитная индукция
- •§ 37. Напряженность магнитного поля
- •§ 38. Магнитный поток
- •§ 39. Намагничивание стали. Магнитная проницаемость
- •§ 40. Перемагничивание стали. Коэрцитивная сила
- •§ 41. Потери энергии на перемагничивание
- •§ 42. Электромагниты и их применение
- •§ 43. Электромагнитная индукция.
- •§ 44. Самоиндукция. Индуктивность
- •§ 45. Величина и направление э. Д. С. Самоиндукции
- •§ 46. Взаимоиндукция
- •§ 47. Вихревые токи
- •Контрольные вопросы
- •Глава IV однофазный переменный ток
- •§ 48. Получение переменной электродвижущей силы
- •§ 49. Основные величины, характеризующие переменный ток
- •§ 50. Понятие о сложении переменных напряжений и токов.
- •§ 51. Понятие о векторах и векторных диаграммах
- •§ 52. Активное сопротивление в цепи переменного тока
- •§ 53. Индуктивность в цепи переменного тока
- •§ 54. Емкость в цепи переменного тока
- •§ 55. Цепь переменного тока с активным и индуктивным сопротивлениями
- •§ 56. Цепь переменного тока с активным, индуктивным и емкостным сопротивлениями
- •§ 57. Цепь переменного тока с параллельно соединенными сопротивлениями
- •§ 58. Понятие о резонансе напряжений
- •§ 59. Понятие о резонансе токов
- •§ 60. Мощность однофазного переменного тока
- •Глава V трехфазная система переменного тока
- •§ 61. Трехфазные генераторы
- •§ 62. Соединения обмоток генератора
- •§ 63. Включение нагрузки в сеть трехфазного тока
- •§ 64. Мощность трехфазного тока
- •§ 65. Вращающееся магнитное поле
- •Контрольные вопросы
- •Глава VI электрические измерительные приборы и измерения
- •§ 66. Общие сведения
- •§ 67. Электромагнитные приборы
- •§ 68. Магнитоэлектрические приборы
- •§ 69. Термоэлектрические приборы
- •§ 70. Электродинамические приборы
- •§ 71. Индукционные приборы
- •§ 72. Измерение силы тока. Расширение пределов измерения амперметра
- •§ 73. Измерение напряжения. Расширение пределов измерения вольтметра
- •§ 74. Измерение сопротивлений
- •§ 75. Мегомметр
- •§ 76. Универсальный электроизмерительный прибор
- •§ 77. Мост для измерения сопротивлений
- •§ 78. Измерение электрической мощности и энергии
- •§ 79. Понятие об измерении неэлектрических величин
- •Контрольные вопросы
- •Глава VII трансформаторы
- •§ 80. Общие сведения о трансформаторах
- •§ 81. Принцип действия и устройство трансформатора
- •§ 82. Рабочий процесс трансформатора
- •§ 83. Трехфазные трансформаторы
- •§ 84. Опыт холостого хода и короткого замыкания
- •§ 85. Определение рабочих свойств трансформаторов по данным опытов холостого хода и короткого замыкания
- •§ 86. Автотрансформаторы
- •§ 87. Измерительные трансформаторы
- •Глава VIII асинхронные двигатели
- •§ 88. Общие положения
- •§ 89. Принцип действия асинхронного двигателя
- •§ 90. Обмотки машин переменного тока
- •§ 91. Устройство асинхронного двигателя
- •§ 92. Работа асинхронного двигателя под нагрузкой
- •§ 93. Вращающий момент асинхронного двигателя
- •§ 94. Рабочие характеристики асинхронного двигателя
- •§ 95. Пуск в ход асинхронных двигателей
- •§ 96. Двигатели с улучшенными пусковыми свойствами
- •§ 97. Регулирование скорости вращения трехфазных асинхронных двигателей
- •§ 98. Однофазные асинхронные двигатели
- •Глава IX синхронные машины
- •§ 100. Принцип действия синхронного генератора
- •§ 101. Устройство синхронного генератора
- •§ 102. Работа синхронного генератора под нагрузкой
- •§ 103. Синхронные двигатели
- •Глава X машины постоянного тока
- •§ 104. Принцип действия генератора постоянного тока
- •§ 105. Устройство генератора постоянного тока
- •§ 106. Обмотки якорей машин постоянного тока
- •§ 107. Э. Д. С. Машины постоянного тока
- •§ 108. Магнитное поле машины постоянного тока при нагрузке
- •§ 109. Коммутация тока
- •§ 110. Работа машины постоянного тока в режиме генератора
- •§ 111. Способы возбуждения генераторов постоянного тока
- •§ 112. Характеристики генераторов постоянного тока
- •§ 113. Работа машины постоянного тока в режиме двигателя
- •§ 114. Пуск двигателей постоянного тока
- •§ 115. Характеристики двигателей постоянного тока
- •§ 116 Регулирование скорости вращения двигателей постоянного тока
- •§ 117. Потери и к. П. Д. Машин постоянного тока
- •§ 118. Коллекторные двигатели переменного тока
- •Глава XI электрическая аппаратура управления и защиты
- •§ 119. Выключатели и рубильники
- •§ 120. Автоматы
- •§ 121. Предохранители
- •§ 122. Реостаты
- •§ 123. Контроллеры
- •§ 124. Контактор. Магнитный пускатель
- •§ 125. Тепловое реле
- •Контрольные вопросы
- •Производство, передача и распределение электрической энергии
- •§ 126. Производство и передача электрической энергии
- •§ 127. Трансформаторные подстанции
- •§ 128. Оборудование трансформаторных подстанций
- •§ 129. Защита электрооборудования
- •Глава XIII электровакуумные приборы
- •§ 130. Электронная эмиссия
- •§ 131. Двухэлектродная лампа (диод)
- •§ 132. Характеристика и параметры диода
- •§ 133. Выпрямление переменного тока
- •§ 134. Трехэлектродная лампа (триод)
- •§ 135. Характеристика и параметры триода
- •§ 136. Принцип усиления электрических колебаний
- •§ 137. Ламповый генератор
- •§ 138. Триод в электронном реле
- •§ 139. Четырехэлектродная лампа (тетрод)
- •§ 140. Пятиэлектродная лампам (пентод)
- •§ 141. Электроннолучевая трубка. Осциллограф
- •Глава XIV газоразрядные приборы
- •§ 142. Ионные приборы
- •§ 143. Неоновая лампа
- •§ 144. Газосветная лампа
- •§ 145. Стабилитрон
- •§ 146. Тиратрон
- •§ 147. Ртутный выпрямитель
- •§ 148. Газоразрядный счетчик радиоактивных излучений
- •Глава XV полупроводниковые приборы
- •§ 149. Строение и электропроводность полупроводников
- •§ 150. Понятие об электронной и дырочной проводимости
- •§ 151. Примесная проводимость полупроводника
- •§ 152. Образование электронно-дырочного перехода
- •§ 153. Полупроводниковые диоды
- •§ 154. Полупроводниковые выпрямители
- •§ 155. Транзисторы
- •§ 156. Тиристоры
- •§ 157. Фотоэлементы и фотореле
- •Контрольные вопросы
§ 144. Газосветная лампа
Газосветная лампа (рис. 200) представляет собой стеклянную трубку 1, внутренние стенки которой покрыты тонким слоем люминофора — состава, светящегося при облучении. В качестве люминофора обычно используются сернистые соединения цинка, магния, кальция и стронция. Воздух из трубки лампы удален, а ее пространство заполнено парами ртути и газом аргоном.
На концах трубки находится два электрода 2 в виде проволочных нитей, к которым подводится электрическая энергия от сети.
В схему включения газосветной лампы включается дроссель 6, стартер 7 и конденсатор 5. Дроссель представляет собой катушку со стальным сердечником. Стартер выполнен в виде миниатюрной неоновой лампы с двумя электродами 3 и 4, которые в холодном состоянии не соприкасаются. Электрод 4 представляет собой биметаллическую пластину. Напряжение зажигания стартера ниже напряжения зажигания газосветной лампы.
При включении лампы в сеть под действием приложенного напряжения между электродами неоновой лампы (стартера) возэлектрический разряд, который быстро нагревает электрод 4, и он, изгибаясь, соединяется с электродом 3. Вследствие этого разряд в неоновой лампе прекращается и электроды 3 и 4 размыкаются. За время разряда, который происходит в стартере, успевают нагреться электроды 2 газосветной лампы, и в этот момент происходит ее зажигание, а в парах ртути и газе лампа возникает электрический разряд. При этом газ, находящийся в газ, находящийся в трубке лампы начинает светиться, излучая частично видимый фиолетовый цвет и много невидимых ультрафиолетовых лучей. Эти невидимые лучи попадают на люминофор, которым покрыты внутренние стенки трубки, и преобразуются в видимый свет, близкий по спектральному составу к дневному. По этой причине такие газосветные лампы называют лампами дневного света. Они трубке лампы, начинает сведают ровный, приятный для глаз свет.
Эти лампы примерно в два раза экономичнее обычных электрических ламп накаливания и обладают в 4—5 раз большим сроком службы.
Они получают все большее распространение для освещения жилых помещений, предприятий, улиц, культурных и бытовых учреждений.
Специальные газосветные лампы применяют в сельском хозяйстве для облучения животных и птиц, что приводит к повышению их продуктивности, а также для облучения рассады овощей и растений, благодаря чему значительно ускоряется их рост.
§ 145. Стабилитрон
Стабилитрон (рис. 201)—это двухэлектродная газоразрядная лампа, широко используемая для поддержания неизменного (стабильного) напряжения Uст. Стабилитрон также называется стабиливольтом. Он состоит из стеклянного баллона 1, который заполнен под небольшим давлением смесью газов неона, аргона и гелия. Внутри баллона помещается катод 2 цилиндрической формы, изготовленный из никеля или стали.
Анод 3 стабилитрона выполнен в виде стержня и расположен в центре катода. Внутреннюю поверхность катода покрывают активным слоем. Это необходимо для того, чтобы при попадании на катод положительных ионов получилась значительная эмиссия вторичных электронов. Электроды соединяются со штырьками цоколя лампы. При подаче положительного напряжения на анод стабилитрона в нем возникает тлеющий разряд.
Для использования стабилитрона в качестве стабилизатора
Напряжение его следует включить так, как показано на схеме (рис. 201, в).
Последовательно с лампой включается ограничительное сопротивление и источник электрической энергии. Приемник, потребляющий неизменное (стабилизированное) напряжение, подсоединяется к стабилитрону параллельно. Напряжение, подводимое к стабилизатору Uнест, распределяется следующим
Допустим, что напряжение источника электрической энергии изменяется; а приемник, подключенный к стабилизатору, может работать только при неизменном напряжении.
Рассмотрим, как происходит процесс стабилизации напряжения. Когда напряжение источника электрической энергии повышается, в цепи стабилизатора и ограничительного сопротивления возрастает ток. Так как внутреннее сопротивление стабилитрона уменьшается пропорционально увеличению силы тока в его цепи, то напряжение на его зажимах остается неизменным, а напряжение U=Iro на зажимах постоянного ограничительного сопротивления возрастает.
При уменьшении напряжения источника электрической энергии, подключенного к стабилизатору, в цепи уменьшается сила тока. Соответственно увеличивается сопротивление стабилитрона и вновь напряжение на его зажимах остается неизменным, а напряжение на ограничительном сопротивлении уменьшается.
Таким образом, при нормальном режиме работы стабилитрона путем изменения силы тока автоматически поддерживается неизменное напряжение на нагрузке, подключенной к его зажимам.
Стабилитрон также стабилизирует напряжение на нагрузке при изменении величины этой нагрузки, т. е. силы тока в ней. Основными показателями, по которым выбираются стабилитроны, являются: напряжение стабилизации, напряжение зажигания, наибольший и наименьший токи.
Напряжение стабилизации несколько меньше напряжения зажигания (в пределах от единиц до нескольких десятков вольт). Так, стабилитрон типа СГ4С рассчитан на стабилизируемое напряжение в 150 в. Наименьший ток его 5 ма, наибольший ток 30 ма.