
- •Глава 1. Электростатика
- •Глава 2. Постоянный ток
- •Глава 3. Электромагнетизм и электромагнитная индукция
- •Глава 4. Однофазный переменный ток
- •Глава 5. Трехфазная система переменного тока
- •Глава 6. Электрические измерительные приборы и измерения
- •66. Общие сведения
- •Глава 7. Трансформаторы стр. 119.
- •Глава 8. Асинхронные двигатели
- •Глава 9. Синхронные машины
- •Глава 10. Машины постоянного тока
- •Глава 11. Электрическая аппаратура управления и защиты
- •Глава 12. Производство, передача и распределение электрической энергии
- •Глава 13. Электровакуумные приборы
- •Глава 14. Газорязрядные приборы
- •Глава 15. Полупроводниковые приборы
- •Глава 1
- •§ 1. Понятие об электронной теории строения вещества
- •§2. Взаимодействие зарядов. Закон кулона
- •§ 3. Электризация тел
- •§ 4. Электрическое поле
- •§ 5. Потенциал
- •§ 6. Напряженность поля
- •§ 7. Понятие об электрическом токе
- •§ 8. Проводники и диэлектрики
- •§ 9. Электрическая емкость. Конденсаторы
- •§ 10. Заряд и разряд конденсатора
- •§11. Соединения конденсаторов
- •§ 12. Понятие об электроискровом способе обработки металлов
- •Контрольные вопросы
- •Глава II
- •Постоянный ток
- •§ 13. Электрическая цепь постоянного тока
- •§ 14. Электродвижущая сила
- •§ 15. Электрическое сопротивление
- •§ 16. Закон ома
- •§ 17. Последовательное соединение сопротивлений
- •§ 18. Первый закон кирхгофа
- •§ 19. Параллельное соединение сопротивлений
- •§ 20. Смешанное соединение сопротивлений
- •§ 21. Второй закон кирхгофа
- •§ 22. Работа и мощность электрического тока
- •§ 23. Коэффициент полезного действия или отдача
- •§ 24. Закон ленца —джоуля
- •§ 25. Нагревание проводников электрическим током
- •§ 26. Электрическая дуга
- •§ 27. Химическое действие электрического тока
- •§ 28. Гальванические элементы
- •§ 29. Аккумуляторы
- •§ 30. Атомные элементы
- •§ 31. Термоэлементы
- •§ 32. Солнечные батареи
- •Глава III
- •Электромагнетизм
- •И электромагнитная индукция
- •§ 33. Общие сведения
- •§ 34. Магнитное поле электрического тока
- •§ 35. Понятие о природе магнетизма
- •§ 36. Магнитная индукция
- •§ 37. Напряженность магнитного поля
- •§ 38. Магнитный поток
- •§ 39. Намагничивание стали. Магнитная проницаемость
- •§ 40. Перемагничивание стали. Коэрцитивная сила
- •§ 41. Потери энергии на перемагничивание
- •§ 42. Электромагниты и их применение
- •§ 43. Электромагнитная индукция.
- •§ 44. Самоиндукция. Индуктивность
- •§ 45. Величина и направление э. Д. С. Самоиндукции
- •§ 46. Взаимоиндукция
- •§ 47. Вихревые токи
- •Контрольные вопросы
- •Глава IV однофазный переменный ток
- •§ 48. Получение переменной электродвижущей силы
- •§ 49. Основные величины, характеризующие переменный ток
- •§ 50. Понятие о сложении переменных напряжений и токов.
- •§ 51. Понятие о векторах и векторных диаграммах
- •§ 52. Активное сопротивление в цепи переменного тока
- •§ 53. Индуктивность в цепи переменного тока
- •§ 54. Емкость в цепи переменного тока
- •§ 55. Цепь переменного тока с активным и индуктивным сопротивлениями
- •§ 56. Цепь переменного тока с активным, индуктивным и емкостным сопротивлениями
- •§ 57. Цепь переменного тока с параллельно соединенными сопротивлениями
- •§ 58. Понятие о резонансе напряжений
- •§ 59. Понятие о резонансе токов
- •§ 60. Мощность однофазного переменного тока
- •Глава V трехфазная система переменного тока
- •§ 61. Трехфазные генераторы
- •§ 62. Соединения обмоток генератора
- •§ 63. Включение нагрузки в сеть трехфазного тока
- •§ 64. Мощность трехфазного тока
- •§ 65. Вращающееся магнитное поле
- •Контрольные вопросы
- •Глава VI электрические измерительные приборы и измерения
- •§ 66. Общие сведения
- •§ 67. Электромагнитные приборы
- •§ 68. Магнитоэлектрические приборы
- •§ 69. Термоэлектрические приборы
- •§ 70. Электродинамические приборы
- •§ 71. Индукционные приборы
- •§ 72. Измерение силы тока. Расширение пределов измерения амперметра
- •§ 73. Измерение напряжения. Расширение пределов измерения вольтметра
- •§ 74. Измерение сопротивлений
- •§ 75. Мегомметр
- •§ 76. Универсальный электроизмерительный прибор
- •§ 77. Мост для измерения сопротивлений
- •§ 78. Измерение электрической мощности и энергии
- •§ 79. Понятие об измерении неэлектрических величин
- •Контрольные вопросы
- •Глава VII трансформаторы
- •§ 80. Общие сведения о трансформаторах
- •§ 81. Принцип действия и устройство трансформатора
- •§ 82. Рабочий процесс трансформатора
- •§ 83. Трехфазные трансформаторы
- •§ 84. Опыт холостого хода и короткого замыкания
- •§ 85. Определение рабочих свойств трансформаторов по данным опытов холостого хода и короткого замыкания
- •§ 86. Автотрансформаторы
- •§ 87. Измерительные трансформаторы
- •Глава VIII асинхронные двигатели
- •§ 88. Общие положения
- •§ 89. Принцип действия асинхронного двигателя
- •§ 90. Обмотки машин переменного тока
- •§ 91. Устройство асинхронного двигателя
- •§ 92. Работа асинхронного двигателя под нагрузкой
- •§ 93. Вращающий момент асинхронного двигателя
- •§ 94. Рабочие характеристики асинхронного двигателя
- •§ 95. Пуск в ход асинхронных двигателей
- •§ 96. Двигатели с улучшенными пусковыми свойствами
- •§ 97. Регулирование скорости вращения трехфазных асинхронных двигателей
- •§ 98. Однофазные асинхронные двигатели
- •Глава IX синхронные машины
- •§ 100. Принцип действия синхронного генератора
- •§ 101. Устройство синхронного генератора
- •§ 102. Работа синхронного генератора под нагрузкой
- •§ 103. Синхронные двигатели
- •Глава X машины постоянного тока
- •§ 104. Принцип действия генератора постоянного тока
- •§ 105. Устройство генератора постоянного тока
- •§ 106. Обмотки якорей машин постоянного тока
- •§ 107. Э. Д. С. Машины постоянного тока
- •§ 108. Магнитное поле машины постоянного тока при нагрузке
- •§ 109. Коммутация тока
- •§ 110. Работа машины постоянного тока в режиме генератора
- •§ 111. Способы возбуждения генераторов постоянного тока
- •§ 112. Характеристики генераторов постоянного тока
- •§ 113. Работа машины постоянного тока в режиме двигателя
- •§ 114. Пуск двигателей постоянного тока
- •§ 115. Характеристики двигателей постоянного тока
- •§ 116 Регулирование скорости вращения двигателей постоянного тока
- •§ 117. Потери и к. П. Д. Машин постоянного тока
- •§ 118. Коллекторные двигатели переменного тока
- •Глава XI электрическая аппаратура управления и защиты
- •§ 119. Выключатели и рубильники
- •§ 120. Автоматы
- •§ 121. Предохранители
- •§ 122. Реостаты
- •§ 123. Контроллеры
- •§ 124. Контактор. Магнитный пускатель
- •§ 125. Тепловое реле
- •Контрольные вопросы
- •Производство, передача и распределение электрической энергии
- •§ 126. Производство и передача электрической энергии
- •§ 127. Трансформаторные подстанции
- •§ 128. Оборудование трансформаторных подстанций
- •§ 129. Защита электрооборудования
- •Глава XIII электровакуумные приборы
- •§ 130. Электронная эмиссия
- •§ 131. Двухэлектродная лампа (диод)
- •§ 132. Характеристика и параметры диода
- •§ 133. Выпрямление переменного тока
- •§ 134. Трехэлектродная лампа (триод)
- •§ 135. Характеристика и параметры триода
- •§ 136. Принцип усиления электрических колебаний
- •§ 137. Ламповый генератор
- •§ 138. Триод в электронном реле
- •§ 139. Четырехэлектродная лампа (тетрод)
- •§ 140. Пятиэлектродная лампам (пентод)
- •§ 141. Электроннолучевая трубка. Осциллограф
- •Глава XIV газоразрядные приборы
- •§ 142. Ионные приборы
- •§ 143. Неоновая лампа
- •§ 144. Газосветная лампа
- •§ 145. Стабилитрон
- •§ 146. Тиратрон
- •§ 147. Ртутный выпрямитель
- •§ 148. Газоразрядный счетчик радиоактивных излучений
- •Глава XV полупроводниковые приборы
- •§ 149. Строение и электропроводность полупроводников
- •§ 150. Понятие об электронной и дырочной проводимости
- •§ 151. Примесная проводимость полупроводника
- •§ 152. Образование электронно-дырочного перехода
- •§ 153. Полупроводниковые диоды
- •§ 154. Полупроводниковые выпрямители
- •§ 155. Транзисторы
- •§ 156. Тиристоры
- •§ 157. Фотоэлементы и фотореле
- •Контрольные вопросы
§ 135. Характеристика и параметры триода
Важнейшей характеристикой триода является анодно-сеточная (рис. 182, а). Она представляет собой график зависимости анодного тока от напряжения на сетке при неизменном напряжении на аноде лампы.
По вертикали отложена сила анодного тока при различных напряжениях на сетке, причем анодное напряжение поддерживается постоянным. С изменением сеточного напряжения от отрицательного значения до нуля сила анодного тока возрастает от нуля до определенной величины. Вместе с тем, чем выше напряжение на аноде, тем больше сила анодного тока при данном напряжении на сетке.
К основным параметрам триода относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления.
Крутизна, т. е. угол наклона характеристики триода, показывает, на сколько миллиампер изменяется сила анодного тока при изменении напряжения на сетке на 1 в и постоянном анодном напряжении:
где ∆Iа — изменение силы анодного тока, ма,
∆Uc — изменение напряжения на сетке, в,
S — крутизна характеристики триода, ма/в.
Для определения крутизны характеристики графическим способом надо построить на ней прямоугольный треугольник, гипотенузой которого является интересующий нас участок характеристики. Катетами этого треугольника являются линии, параллельные осям графика. Горизонтальный катет показывает величину изменений напряжения на сетке ∆Uс, а вертикальный — изменение анодного тока I∆Iа. Разделив числа, соответствующие этим отрезкам ∆Ua и ∆Iа, найдем крутизну характеристики на заданном участке.
Пример. Изменение напряжения на сетке триода на 2 в приводит к изменения анодного тока на 10 ма. Определить крутизну характеристики.
Решение.
Характеристики триода, снятые при различных напряжениях на аноде лампы, располагаются на графике почти параллельно одна относительно другой. Однако, как видно из рис. 182, б, характеристика триода, снятая при большем напряжении на аноде, располагается выше и левее, а снятые при более низком напряжении — ниже.
Такая группа характеристик называется семейством анодно-сеточных характеристик.
Параметром, характеризующим усилительные свойства триода является коэффициент усиления.
Близко расположенная к катоду сетка воздействует на электроны гораздо сильнее, чем далеко расположенный анод. Поэтому изменить анодный ток на некоторую определенную величину молено либо соответствующим изменением анодного напряжения, либо во много раз меньшим изменением напряжения на сетке.
Коэффициент усиления лампы μ определяется отношением изменения анодного напряжения к изменению напряжения на сетке при постоянном анодном токе:
Пример. В лампе, в которой для изменения анодного тока на 2 ма необходимо либо изменить анодное напряжение на 18 в, либо сеточное напряжение на 0,3 в. Определить коэффициент усиления.
Решение.
В данном случае можно сказать, что напряжение на сетке воздействует на вылетающие из катода электроны в 60 раз сильнее анодного напряжения.
Коэффициент усиления триодов лежит в пределах 4—100.
Внутреннее сопротивление триодов имеет различную величину и измеряется в зависимости от рабочего режима триода. Современные триоды обладают внутренним сопротивлением 1000—100 000 ом. Так, если в лампе при изменении анодного напряжения на 10 в анодный ток изменяется на 2 ма (0, 002 а), то внутреннее сопротивление такой лампы, определяемое путем деления изменения напряжения на изменение силы тока, равно:
Величину внутреннего сопротивления лампы можно определить по семейству характеристик.
На рис. 182, б видно, что при напряжении на сетке Uc=0 и анодном напряжении 100 в анодный ток равен 10 ма (нижняя характеристика). При анодном напряжении Uа=150 в анодный ток равен 18 ма, следовательно, при изменении анодного напряжения ∆Uа= 1=150—100=50 в анодный ток изменился ∆Iа= 18—10 = 8 ма (0,008 а).
Внутреннее сопротивление лампы
Для триодов разных типов требуется различное напряжение накала Uн и анодное напряжение Uа. Триоды также отличаются по величине мощности рассеяния на аноде Ра.
Межэлектродной емкостью называется емкость, образованная близко расположенными друг к другу электродами триода, которые разделены диэлектриком —вакуумом.
В триоде образуется межэлектродная емкость между анодом и сеткой (Са-с) между катодом и сеткой и между анодом и катодом. Величина этих емкостей составляет 2—10 пф. Эти емкости являются нежелательными и их называют паразитными. Особенно вредной является межэлектродная емкость между анодом и сеткой Са-с (рис. 183), так как через эту емкость осуществляется паразитная связь между анодом и цепью сетки.
Когда на управляющую сетку триода не подаются сигналы, подлежащие усилению, емкость Са-с заряжается до уровня напряжения, действующего между анодом и сеткой лампы.
При подаче усиливаемого сигнала на сетку триода изменяется напряжение на аноде и при этом емкость Са-с будет заряжаться или разряжаться. Цепь заряда этой емкости такая: + Eа, Ra, Са-с, Re, земля. Цепь разряда этой емкости будет: +Са-с, анод, катод, Rc, - Ca-c.
Как видно из схемы, заряд и разряд емкости протекает через >сопротивление Rc и на нем создается напряжение, которое приложено к управляющей сетке наряду с напряжением усиливаемого сигнала. Таким образом, любое изменение анодного напряжения будет оказывать влияние через межэлектродную емкость Са-с на цепь сетки, что может привести к самовозбуждению усилителя и искажению усиливаемых сигналов.
Паразитная связь анод —сетка особенно сильно проявляется при подведении к сетке триода сигналов высокой частоты, так как емкостное сопротивление Са-с с повышением частоты уменьшается