
- •Глава 1. Электростатика
- •Глава 2. Постоянный ток
- •Глава 3. Электромагнетизм и электромагнитная индукция
- •Глава 4. Однофазный переменный ток
- •Глава 5. Трехфазная система переменного тока
- •Глава 6. Электрические измерительные приборы и измерения
- •66. Общие сведения
- •Глава 7. Трансформаторы стр. 119.
- •Глава 8. Асинхронные двигатели
- •Глава 9. Синхронные машины
- •Глава 10. Машины постоянного тока
- •Глава 11. Электрическая аппаратура управления и защиты
- •Глава 12. Производство, передача и распределение электрической энергии
- •Глава 13. Электровакуумные приборы
- •Глава 14. Газорязрядные приборы
- •Глава 15. Полупроводниковые приборы
- •Глава 1
- •§ 1. Понятие об электронной теории строения вещества
- •§2. Взаимодействие зарядов. Закон кулона
- •§ 3. Электризация тел
- •§ 4. Электрическое поле
- •§ 5. Потенциал
- •§ 6. Напряженность поля
- •§ 7. Понятие об электрическом токе
- •§ 8. Проводники и диэлектрики
- •§ 9. Электрическая емкость. Конденсаторы
- •§ 10. Заряд и разряд конденсатора
- •§11. Соединения конденсаторов
- •§ 12. Понятие об электроискровом способе обработки металлов
- •Контрольные вопросы
- •Глава II
- •Постоянный ток
- •§ 13. Электрическая цепь постоянного тока
- •§ 14. Электродвижущая сила
- •§ 15. Электрическое сопротивление
- •§ 16. Закон ома
- •§ 17. Последовательное соединение сопротивлений
- •§ 18. Первый закон кирхгофа
- •§ 19. Параллельное соединение сопротивлений
- •§ 20. Смешанное соединение сопротивлений
- •§ 21. Второй закон кирхгофа
- •§ 22. Работа и мощность электрического тока
- •§ 23. Коэффициент полезного действия или отдача
- •§ 24. Закон ленца —джоуля
- •§ 25. Нагревание проводников электрическим током
- •§ 26. Электрическая дуга
- •§ 27. Химическое действие электрического тока
- •§ 28. Гальванические элементы
- •§ 29. Аккумуляторы
- •§ 30. Атомные элементы
- •§ 31. Термоэлементы
- •§ 32. Солнечные батареи
- •Глава III
- •Электромагнетизм
- •И электромагнитная индукция
- •§ 33. Общие сведения
- •§ 34. Магнитное поле электрического тока
- •§ 35. Понятие о природе магнетизма
- •§ 36. Магнитная индукция
- •§ 37. Напряженность магнитного поля
- •§ 38. Магнитный поток
- •§ 39. Намагничивание стали. Магнитная проницаемость
- •§ 40. Перемагничивание стали. Коэрцитивная сила
- •§ 41. Потери энергии на перемагничивание
- •§ 42. Электромагниты и их применение
- •§ 43. Электромагнитная индукция.
- •§ 44. Самоиндукция. Индуктивность
- •§ 45. Величина и направление э. Д. С. Самоиндукции
- •§ 46. Взаимоиндукция
- •§ 47. Вихревые токи
- •Контрольные вопросы
- •Глава IV однофазный переменный ток
- •§ 48. Получение переменной электродвижущей силы
- •§ 49. Основные величины, характеризующие переменный ток
- •§ 50. Понятие о сложении переменных напряжений и токов.
- •§ 51. Понятие о векторах и векторных диаграммах
- •§ 52. Активное сопротивление в цепи переменного тока
- •§ 53. Индуктивность в цепи переменного тока
- •§ 54. Емкость в цепи переменного тока
- •§ 55. Цепь переменного тока с активным и индуктивным сопротивлениями
- •§ 56. Цепь переменного тока с активным, индуктивным и емкостным сопротивлениями
- •§ 57. Цепь переменного тока с параллельно соединенными сопротивлениями
- •§ 58. Понятие о резонансе напряжений
- •§ 59. Понятие о резонансе токов
- •§ 60. Мощность однофазного переменного тока
- •Глава V трехфазная система переменного тока
- •§ 61. Трехфазные генераторы
- •§ 62. Соединения обмоток генератора
- •§ 63. Включение нагрузки в сеть трехфазного тока
- •§ 64. Мощность трехфазного тока
- •§ 65. Вращающееся магнитное поле
- •Контрольные вопросы
- •Глава VI электрические измерительные приборы и измерения
- •§ 66. Общие сведения
- •§ 67. Электромагнитные приборы
- •§ 68. Магнитоэлектрические приборы
- •§ 69. Термоэлектрические приборы
- •§ 70. Электродинамические приборы
- •§ 71. Индукционные приборы
- •§ 72. Измерение силы тока. Расширение пределов измерения амперметра
- •§ 73. Измерение напряжения. Расширение пределов измерения вольтметра
- •§ 74. Измерение сопротивлений
- •§ 75. Мегомметр
- •§ 76. Универсальный электроизмерительный прибор
- •§ 77. Мост для измерения сопротивлений
- •§ 78. Измерение электрической мощности и энергии
- •§ 79. Понятие об измерении неэлектрических величин
- •Контрольные вопросы
- •Глава VII трансформаторы
- •§ 80. Общие сведения о трансформаторах
- •§ 81. Принцип действия и устройство трансформатора
- •§ 82. Рабочий процесс трансформатора
- •§ 83. Трехфазные трансформаторы
- •§ 84. Опыт холостого хода и короткого замыкания
- •§ 85. Определение рабочих свойств трансформаторов по данным опытов холостого хода и короткого замыкания
- •§ 86. Автотрансформаторы
- •§ 87. Измерительные трансформаторы
- •Глава VIII асинхронные двигатели
- •§ 88. Общие положения
- •§ 89. Принцип действия асинхронного двигателя
- •§ 90. Обмотки машин переменного тока
- •§ 91. Устройство асинхронного двигателя
- •§ 92. Работа асинхронного двигателя под нагрузкой
- •§ 93. Вращающий момент асинхронного двигателя
- •§ 94. Рабочие характеристики асинхронного двигателя
- •§ 95. Пуск в ход асинхронных двигателей
- •§ 96. Двигатели с улучшенными пусковыми свойствами
- •§ 97. Регулирование скорости вращения трехфазных асинхронных двигателей
- •§ 98. Однофазные асинхронные двигатели
- •Глава IX синхронные машины
- •§ 100. Принцип действия синхронного генератора
- •§ 101. Устройство синхронного генератора
- •§ 102. Работа синхронного генератора под нагрузкой
- •§ 103. Синхронные двигатели
- •Глава X машины постоянного тока
- •§ 104. Принцип действия генератора постоянного тока
- •§ 105. Устройство генератора постоянного тока
- •§ 106. Обмотки якорей машин постоянного тока
- •§ 107. Э. Д. С. Машины постоянного тока
- •§ 108. Магнитное поле машины постоянного тока при нагрузке
- •§ 109. Коммутация тока
- •§ 110. Работа машины постоянного тока в режиме генератора
- •§ 111. Способы возбуждения генераторов постоянного тока
- •§ 112. Характеристики генераторов постоянного тока
- •§ 113. Работа машины постоянного тока в режиме двигателя
- •§ 114. Пуск двигателей постоянного тока
- •§ 115. Характеристики двигателей постоянного тока
- •§ 116 Регулирование скорости вращения двигателей постоянного тока
- •§ 117. Потери и к. П. Д. Машин постоянного тока
- •§ 118. Коллекторные двигатели переменного тока
- •Глава XI электрическая аппаратура управления и защиты
- •§ 119. Выключатели и рубильники
- •§ 120. Автоматы
- •§ 121. Предохранители
- •§ 122. Реостаты
- •§ 123. Контроллеры
- •§ 124. Контактор. Магнитный пускатель
- •§ 125. Тепловое реле
- •Контрольные вопросы
- •Производство, передача и распределение электрической энергии
- •§ 126. Производство и передача электрической энергии
- •§ 127. Трансформаторные подстанции
- •§ 128. Оборудование трансформаторных подстанций
- •§ 129. Защита электрооборудования
- •Глава XIII электровакуумные приборы
- •§ 130. Электронная эмиссия
- •§ 131. Двухэлектродная лампа (диод)
- •§ 132. Характеристика и параметры диода
- •§ 133. Выпрямление переменного тока
- •§ 134. Трехэлектродная лампа (триод)
- •§ 135. Характеристика и параметры триода
- •§ 136. Принцип усиления электрических колебаний
- •§ 137. Ламповый генератор
- •§ 138. Триод в электронном реле
- •§ 139. Четырехэлектродная лампа (тетрод)
- •§ 140. Пятиэлектродная лампам (пентод)
- •§ 141. Электроннолучевая трубка. Осциллограф
- •Глава XIV газоразрядные приборы
- •§ 142. Ионные приборы
- •§ 143. Неоновая лампа
- •§ 144. Газосветная лампа
- •§ 145. Стабилитрон
- •§ 146. Тиратрон
- •§ 147. Ртутный выпрямитель
- •§ 148. Газоразрядный счетчик радиоактивных излучений
- •Глава XV полупроводниковые приборы
- •§ 149. Строение и электропроводность полупроводников
- •§ 150. Понятие об электронной и дырочной проводимости
- •§ 151. Примесная проводимость полупроводника
- •§ 152. Образование электронно-дырочного перехода
- •§ 153. Полупроводниковые диоды
- •§ 154. Полупроводниковые выпрямители
- •§ 155. Транзисторы
- •§ 156. Тиристоры
- •§ 157. Фотоэлементы и фотореле
- •Контрольные вопросы
§ 49. Основные величины, характеризующие переменный ток
Переменная э.д.с, переменное напряжение, а также переменный ток характеризуются периодом, частотой, мгновенным, максимальным и действующим значениями.
Период. Время, в течение которого переменная э. д. с. (напряжение или ток) совершает одно полное изменение по величине и направлению (один цикл), называется периодом. Период обозначается буквой Т и измеряется в секундах.
Если одно полное изменение переменной э.д.с. совершается за 1/50 сек, то период этой э. д. с. равен 1/50 сек.
Частота. Число полных изменений переменной э. д. с. (напряжения или тока), совершаемых за одну секунду, называется частотой. Частота обозначается буквой f и измеряется в герцах (гц). При измерении больших частот пользуются единицами килогерц (кгц) и мегагерц (Мгц); 1 кгц = 1000 гц,
1 Мгц=1000 кгц, 1 Мгц=1 000 000 гц=106 гц. Чем больше частота переменного тока, тем короче период. Таким образом, частота — величина, обратная периоду.
Пример. Длительность одного периода переменного тока равна 1/500 сек. Определить частоту тока.
Решение. Одно полное изменение переменного тока происходит за 1/500 сек. Следовательно, за одну секунду совершится 500 таких изменений. На основании этого частота
Чем больше период переменного тока, тем меньше его частота. Таким образом, период является величиной, обратной частоте, т. е.
Пример. Частота тока равна 2000 гц (2 кгц). Определить период этого переменного тока.
Решение. За 1 сек происходит 2000 полных изменений переменного тока. Следовательно, одно полное изменение тока — один период совершается за 1/2000 долю секунды. На основании этого период
Угловая частота. При вращении витка в магнитном поле один его оборот соответствует 360°, или 2π радиан[9] . Если, например, виток за время Т = 3 сек совершает один оборот, то угловая скорость его вращения за одну секунду
Соответственно
угловая скорость вращения этого витка
выражается в рад/сек и определяется
отношением
.
Эта величина называется угловой
частотой
и обозначается буквой
ω.
Таким образом
Так
как частота переменного тока f =
,
то, подставляя это значение f
в выражение угловой частоты, получим:
Угловая частота ω, выраженная в paд/сек, больше частоты тока f выраженной в герцах, в 2π раз.
Если частота переменного тока f = 50 гц, то угловая частота
В различных областях техники применяют переменные токи самых разных частот. На электростанциях СССР установлены генераторы, вырабатывающие переменную электродвижущую силу, частота которой f = 50 гц. В радиотехнике и электронике используют переменные токи частотой от десятков до многих миллионов герц.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (е, i, u, р).
Максимальным значением (амплитудой) переменной э. д. с. (ила напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Ет, напряжения — Um, тока — Im.
На рис. 48 видно, что переменная э. д. с. достигает своего значения два раза за один период.
Действующая величина. Электрический ток, протекающий по проводам, нагревает их независимо от своего направления. В связи с этим тепло выделяется не только в цепях постоянного тока, нов в электрических цепях, по которым протекает переменный ток.
Если по проводнику сопротивлением rом протекает переменным электрический ток, то в каждую секунду выделяется определенное количество тепла. Это количество тепла прямо пропорциональна максимальному значению переменного тока.
Можно подобрать такой постоянный ток, который, протекая по такому же сопротивлению, что и переменный ток, выделял бы равное количество тепла. В этом случае можно сказать, что в среднем действие (эффективность) переменного тока по количеству выделенного тепла равно действию постоянного тока.
Действующим (или эффективным) значением переменного ток называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Электроизмерительные приборы (амперметр, вольтметр), включенные в цепь переменного тока, измеряют соответственно действующее значение тока и напряжения.
Для
синусоидального переменного тока
действующее значение меньше максимального
в 1,41 раз, т. е. в
раз.
Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1.41 раза.
По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:
Пример. Вольтметр, подключенный в зажимах цепи, показывает действующее напряжение U =127 в. Вычислить максимальное значение (амплитуду) этого переменного напряжения.
Решение. Максимальное значение напряжения больше действующего в раз, поэтому
Для характеристики каждой переменной электродвижущей силы, переменного напряжения или переменного тока недостаточно знать период, частоту и максимальное значение.
Фаза. Сдвиг фаз. При сопоставлении двух и более переменных синусоидальных величин (э.д. с, напряжения или тока) необходимо также учитывать, что они могут изменяться во времени неодинаково и достигать своего максимального значения в разные моменты времени. Если в электрической цепи ток изменяется во времени так же, Как меняется э.д.с, т. е. когда электродвижущая сила равна нулю и ток в цепи равен нулю, а при увеличении э.д.с, до положительного максимального значения одновременно увеличивается и достигает положительной максимальной величины и сила тока в цепи, и I далее, когда э. д. с. уменьшается до нуля и сила тока одновременно станет равна нулю и т. д., то в такой цепи переменная электродвижущая сила и переменный ток совпадают по фазе.
На
рис. 49 показаны моменты вращения двух
проводников в магнитном поле и графики
изменения э.д. с. в проводах.
Провод 1 и провод 2 смещены на угол
.
При пересечении магнитного потока в
каждом из проводов возникает переменная
э.д. с. Когда в проводе 2 электродвижущая
сила равна нулю, в проводе 1 она будет
максимальной. В проводе 2 э.д.с. постепенно
увеличивается и достигает максимального
значения в момент t1,
а в проводе 1 индуктируемая э, д.
с. постепенно убывает и в этот же
момент времени равна
нулю. Таким образом,
индуктируемые в проводах
э. д. с. не совпадают по
фазе, а сдвинуты одна
относительно другой по фазе на 1/4
периода или на угол =90°. Кроме того,
э.д. с. в проводе 1 раньше достигает
максимума, чем э.д. с. в про воде 2, и
поэтому считают, что электродвижущая
сила e1
опережает по фазе э. д. с. e2,
или э. д. с. е2
отстает по фазе от э.д.с. э1.
При расчетах цепей переменного тока
важное практическое значение имеете
сдвиг фаз между переменными напряжением
и током.