
- •Базовые технологии локальных сетей
- •3.1. Протоколы и стандарты локальных сетей
- •3.1.1. Общая характеристика протоколов локальных сетей
- •3.1.2. Структура стандартов ieee 802.X
- •3.2. Протокол llc уровня управления логическим каналом (802.2)
- •3.2.1. Три типа процедур уровня llc
- •3.2.2. Структура кадров llc. Процедура с восстановлением кадров llc2
- •3.3. Технология Ethernet (802.3)
- •3.3.1. Метод доступа csma/cd
- •Этапы доступа к среде
- •Возникновение коллизии
- •Время двойного оборота и распознавание коллизий
- •3.3.2. Максимальная производительность сети Ethernet
- •3.3.3. Форматы кадров технологии Ethernet
- •Кадр 802.3/llc
- •Кадр Raw 802.3/Novell 802.3
- •Кадр Ethernet dix/Ethernet II
- •Кадр Ethernet snap
- •Использование различных типов кадров Ethernet
- •3.3.4. Спецификации физической среды Ethernet
- •Стандарт 10Base-5
- •Стандарт 10Base-2
- •Стандарт 10Bаse-t
- •Оптоволоконный Ethernet
- •Домен коллизий
- •3.3.5. Методика расчета конфигурации сети Ethernet
- •Расчет pdv
- •Расчет pw
- •3.4. Технология Token Ring (802.5)
- •3.4.1. Основные характеристики технологии
- •3.4.2. Маркерный метод доступа к разделяемой среде
- •3.4.3. Форматы кадров Token Ring
- •Кадр данных и прерывающая последовательность
- •Приоритетный доступ к кольцу
- •3.4.4. Физический уровень технологии Token Ring
- •3.5. Технология fddi
- •3.5.1. Основные характеристики технологии
- •3.5.2. Особенности метода доступа fddi
- •3.5.3. Отказоустойчивость технологии fddi
- •3.5.4. Физический уровень технологии fddi
- •3.5.5. Сравнение fddi с технологиями Ethernet и Token Ring
- •3.6. Fast Ethernet и 100vg - AnyLan как развитие технологии Ethernet
- •3.6.1. Физический уровень технологии Fast Ethernet
- •Физический уровень 100Base-fx - многомодовое оптоволокно, два волокна
- •Физический уровень 100Base-tx - витая пара dtp Cat 5 или stp Type 1, две пары
- •Физический уровень 100Base-t4 - витая пара utp Cat 3, четыре пары
- •3.6.2. Правила построения сегментов Fast Ethernet при использовании повторителей
- •Ограничения длин сегментов dte-dte
- •Ограничения сетей Fast Ethernet, построенных на повторителях
- •3.6.3. Особенности технологии 100vg-AnyLan
- •3.7. Высокоскоростная технология Gigabit Ethernet
- •3.7.1. Общая характеристика стандарта
- •3.7.2. Средства обеспечения диаметра сети в 200 м на разделяемой среде
- •3.7.3. Спецификации физической среды стандарта 802.3z
- •Многомодовый кабель
- •Одномодовый кабель
- •Твинаксиальный кабель
- •3.7.4. Gigabit Ethernet на витой паре категории 5
- •Вопросы и упражнения
Какую работу нужно написать?
3.5.5. Сравнение fddi с технологиями Ethernet и Token Ring
В табл. 3.7 представлены результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring.
Таблица 3.7.Характеристики технологий FDDI, Ethernet, Token Ring
Технология FDDI разрабатывалась для применения в ответственных участках сетей - на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главным для разработчиков было обеспечить высокую скорость передачи данных, отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой. Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Поэтому практика показала, что основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN. Для подключения клиентских компьютеров и даже небольших серверов технология оказалась слишком дорогой. А поскольку оборудование FDDI выпускается уже около 10 лет, значительного снижения его стоимости ожидать не приходится.
В результате сетевые специалисты с начала 90-х годов стали искать пути создания сравнительно недорогих и в то же время высокоскоростных технологий, которые бы так же успешно работали на всех этажах корпоративной сети, как это делали в 80-е годы технологии Ethernet и Token Ring.
Выводы
Технология FDDI первой использовала волоконно-оптический кабель в локальных сетях, а также работу на скорости 100 Мбит/с.
Существует значительная преемственность между технологиями Token Ring и FDDI: для обеих характерны кольцевая топология и маркерный метод доступа.
Технология FDDI является наиболее отказоустойчивой технологией локальных сетей. При однократных отказах кабельной системы или станции сеть, за счет «сворачивания» двойного кольца в одинарное, остается вполне работоспособной.
Маркерный метод доступа FDDI работает по-разному для синхронных и асинхронных кадров (тип кадра определяет станция). Для передачи синхронного кадра станция всегда может захватить пришедший маркер на фиксированное время. Для передачи асинхронного кадра станция может захватить маркер только в том случае, когда маркер выполнил оборот по кольцу достаточно быстро, что говорит об отсутствии перегрузок кольца. Такой метод доступа, во-первых, отдает предпочтение синхронным кадрам, а во-вторых, регулирует загрузку кольца, притормаживая передачу несрочных асинхронных кадров.
В качестве физической среды технология FDDI использует волоконно-оптические кабели и UTP категории 5 (этот вариант физического уровня называется TP-PMD).
Максимальное количество станций двойного подключения в кольце - 500, максимальный диаметр двойного кольца - 100 км. Максимальные расстояния между соседними узлами для многомодового кабеля равны 2 км, для витой пары UPT категории 5-100 м, а для одномодового оптоволокна зависят от его качества.