Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛР Свыше 1000 В (2012г).docx
Скачиваний:
49
Добавлен:
17.11.2019
Размер:
22.11 Mб
Скачать

Измерительные трансформаторы напряжения

Общие сведения и схемы соединения

Трансформатор напряжения предназначен для понижения высокого напряжения до стандартного значения 100 или 100/3 В и для отделения цепей измерения и релейной защиты от первичных цепей высокого напряжения. Схема включения однофазного трансформатора напряжения показана на рис. 1; первичная обмотка включена на напряжение сети U1, а ко вторичной обмотке (напряжение U2) присоединены параллельно катушке измерительных приборов и реле. Для безопасности обслуживания один выход вторичной обмотки заземлен. ТН в отличие от трансформатора тока работает в режиме, близкому к ХХ, т.к. сопротивление параллельных катушек приборов и реле большое, а ток, п отребляемый ими, не велик.

Рис.1 Схема включения трансформатора напряжения :

  1. первичная обмотка;

  2. магнитопровод;

  3. вторичная обмотка;

Номинальный коэффициент трансформации определяется следующим выражением:

где U1ном , U2ном – номинальные первичное и вторичное напряжение соответственно.

Рассеяние магнитного потока и потери в сердечнике приводят к погрешности измерения

100

Так же как и трансформаторах тока , вектор вторичного напряжения сдвинут относительно вектора первичного напряжения не точно на угол 1800. Это определяет угловую погрешность.

В зависимости от номинальной погрешности различают классы точности 0,2; 0,5; 1; 3.

Погрешность зависит от конструкции магнитопровода, магнитной проницаемости стали и от cos вторичной нагрузки. В конструкции трансформаторов напряжения предусматривается компенсация погрешности по напряжению путем некоторого уменьшения числа витков первичной обмотки, а также компенсация угловой погрешности за счет специальных компенсирующих обмоток.

Суммарное потребление обмоток измерительных приборов и реле,

подключенных ко вторичной обмотке ТН, не должно превышать номинальную мощность ТН, т.к. в противном случае это приведет к увеличению погрешностей.

В зависимости от назначения могут применятся ТН с различными схемами соединения обмоток. Для измерения трех междуфазных напряжений можно использовать два однофазных двухобмоточных трансформатора НОМ, НОС, НОЛ, соединенных по схеме открытого треугольника ( рис. 2, а), а также трехфазный двухобмоточный трансформатор НТМК, обмотки которого соединены в звезду (рис.2,б). Для измерения напряжения относительно земли могут применяться 3 однофазных трансформатора, соединенных по схеме Y0/Y0, или трехфазный трехобмоточный трансформатор НТМИ (рис.2, в). В последнем случае обмотка, соединенная в звезду, используется для присоединения измерительных приборов, а к обмотке, соединенной в разомкнутый треугольник, присоединяется реле защиты от замыканий на землю. Таким же образом в трехфазную группу соединяются однофазные трехобмоточные трансформаторы типа ЗНОМ и каскадные трансформаторы НКФ.

Рис. 2. Схемы соединения обмоток трансформаторов напряжения.

Конструкции трансформаторов напряжения

По конструкции различают трехфазные и однофазные трансформаторы. Трехфазные трансформаторы напряжения применяются при напряжении до 18 кВ, однофазные – на любые напряжения. По типу изоляции трансформаторы могут быть сухими, масляными и с литой изоляцией.

Обмотки сухих трансформаторов выполняются проводом ПЭЛ, а изоляцией между обмотками служит элетрокартон. Такие трансформаторы применяются в установках до 1000 В (НОС-0,5- трансформатор напряжения однофазный, сухой, на 0,5 кВ).

Трансформаторы напряжения с масляной изоляцией применяются на напряжение 6-1150 кВ закрытых и открытых РУ. В таких трансформаторах обмотки и магнитопровод залиты маслом, которое служит для изоляции и охлаждения. Следует отличать однофазные двухобмоточные трансформаторы НОМ-6, НОМ-10, НОМ-15, НОМ-35 от однофазных трехобмоточных ЗНОМ-15, ЗНОМ-20, ЗНОМ-35.

Схема обмоток первых показана на рис.3,а. Такие трансформаторы имеют два ввода ВН и два ввода НН, их можно соединить по схемам открытого треугольника, звезды, треугольника. У трансформаторов второго типа (рис.3,б) один конец обмотки ВН заземлен, единственный ввод ВН расположен на крышке, а вводы НН – на боковой стенке. Обмотка ВН рассчитана на фазное напряжение, основная обмотка НН – на100/3 В, дополнительная обмотка – на 100/3 В. Такие трансформаторы называются заземляемыми и соединяются по схеме, показанной на рис. 2,в.

Рис.3. Трансформаторы напряжения однофазные масляные: а- НОМ-35; б- ЗНОМ-35; 1- ввод ВН; 2- коробка вводов НН; 3- бак.

Рис. 4. Установка трансформатора напряжения ЗНОМ-20 в комплектном токопроводе.

Трансформаторы типов ЗНОМ-15, ЗНОМ-20, ЗНОМ-24 устанавливаются в комплектных шинопроводах мощных генераторов. Для уменьшения потерь от намагничивания их баки выполняются из немагнитной стали.

На рисунке 3 показана установка такого трансформатора в комплектном токопроводе. Трансформатор с помощью ножевого контакта 3, расположенного на вводе ВН, присоединяется к пружинящим контактам, закреплённым на токопроводе 1, закрытом экраном 2. К патрубку 5 со смотровыми люками 4 болтами 6 прикреплена крышка трансформатора. Таким образом, ввод ВН трансформатора находится в закрытом отростке экрана токопровода. Зажимы обмоток НН выведены на боковую стенку бака и закрываются отдельным кожухом.

Трехфазные масляные трансформаторы типа НТМИ имеют пятистержневой магнитопровод и три обмотки, соединенные по схеме, показанной на рисунке 2, в. Такие трансформаторы предназначены для присоединения приборов контроля изоляции.

Все шире применяются трансформаторы напряжения с литой изоляцией. Заземляемые трансформаторы напряжения ЗНОЛ-06 имеют пять исполнений по номинальному напряжению: 6, 10,15, 20 и 24 кВ. Магнитопровод в них ленточный, разрезной, С-образный, что позволило увеличить класс точности до 0,2. Такие трансформаторы имеют небольшую массу, могут устанавливаться в любом положении, пожаробезопасны. Трансформаторы ЗНОЛ-06 предназначены для установки в КРУ и комплектных токопроводах вместо масляных трансформаторов НТМИ и ЗНОМ, а трансформаторы серии НОЛ.08 – для замены НОМ-6 и НОМ-10.

На рис. 5. показан однофазный двухобмоточный трансформатор с незаземленными выводами типа НОЛ.08-6 на 6 кВ. Трансформатор представляет собой литой блок, в который залиты обмотки и магнитопровод.

Рис. 5.

Трансформатор напряжения на переднем торце трансформатора НОЛ.08-6.

и закрыты крышкой.

В установках 110 кВ и выше применяются трансформаторы напряжения каскадного типа НКФ. В этих трансформаторах обмотка ВН равномерно распределяется по нескольким магнитопроводам, благодаря чему облегчается ее изоляция. Трансформатор НКФ-110 (рис.6) имеет двухстержневой магнитопровод, на каждом стержне которого расположена обмотка ВН, рассчитанные на Uф/2.

Т.к. общая точка обмотки ВН соединена с магнитопроводом, то он по отношению к земле находится под потенциалом Uф/2. Обмотки ВН изолируются от магнитопровода также на Uф/2. Обмотки НН (основная и дополнительная) намотаны на нижнем стержне магнитопровода. Для равномерного распределения нагрузки по обмоткам ВН служит обмотка связи П. Такой блок, состоящий из магнитопровода и обмоток, помещается в фарфоровую рубашку и заливается маслом. Трансформаторы напряжения (TV) на 220 кВ состоят из двух блоков, установленных один над другим, т.е. имеют два магнитопровода и четыре ступени каскадной обмотки ВН с изоляцией на Uф/4. Трансформаторы напряжения НКФ-330 и НКФ-500 соответственно имеют четыре блока, т.е. 6 и 8 ступеней обмотки ВН. Чем больше каскадов обмотки, тем больше их активное и реактивное сопротивление, возрастают погрешности и поэтому трансформаторы НКФ 330 и НКФ-500 выпускаются только в классах точности 1 и 3. Кроме того, чем выше напряжение тем сложнее конструкция трансформаторов напряжения, поэтому в установках 500 кВ и выше применяются трансформаторные устройства с емкостным отбором мощности, присоединенные к конденсаторам высокочастотной связи С1 с помощью конденсатора отбора мощности С2 (рис.6). Напряжение, снимаемое с С2 (10-15 кВ), подается на трансформатор TV, имеющий две вторичные обмотки, которые соединяются по такой же схеме, как и у трансформаторов НКФ или ЗНОМ. Для увеличения точности работы в цепь его первичной обмотки включен дроссель L, с помощью которого контур отбора напряжения настраивается в резонанс с конденсатором С2. Дроссель L и трансформатор TV встраиваются в общий бак и заливаются маслом. Заградитель ЗВ не пропускает токи высокой частоты в трансформатор напряжения. Фильтр присоединения Z предназначен для подключения высокочастотных постов защиты, Такое устройство получило название емкостного трансформатора напряжения НДЕ. На рис 6,б показана установка НДЕ-500-72.

При надлежащем выборе всех элементов и настройке схемы устройство НДЕ может быть выполнено на класс точности 0,5 и выше. Для установок 750 и 1150 кВ применяется трансформаторы НДЕ-750 и НДЕ-1150.

Рис. 6 трансформатор напряжения НДЕ:

а) схема

б) установка НДЕ-500-72:

  1. делитель

  2. разъединитель

  3. трансформатор напряжения и дроссель

  4. заградитель высокочастотный

  5. разрядник

  6. привод

Выбор трансформаторов напряжения

Трансформаторы напряжения выбираются:

- по напряжению установки

Uуст Uном;

- по конструкции и схеме соединения обмоток;

- по классу точности;

- по вторичной нагрузке

-

S2  Sном,

где Sном- номинальная мощность в выбранном классе точности, при этом следует иметь в виду, что для однофазных трансформаторов, соединенных в звезду, следует взять суммарную мощность всех трех фаз, а для соединенных по схеме открытого треугольника - удвоенную мощность одного трансформатора;

S2 - нагрузка всех измерительных приборов и реле, присоединенных к трансформатору напряжения, ВА.

Для упрощения расчетов нагрузку можно не разделять по фазам, тогда

Если вторичная нагрузка превышает номинальную мощность в выбранном классе точности, то устанавливают второй трансформатор напряжения и часть приборов присоединяют к нему.

Сечение проводов в цепях трансформаторов напряжения определяются по допустимой потере напряжения. Согласно ПУЭ потеря напряжения от трансформаторов напряжения до расчетных счетчиков должна быть не более 1.5% при нормальной нагрузке.

Трансформатором тока (ТТ), являющимся наиболее широко применяемым ИПТ, называется такой трансформатор, в котором при нормальных условиях работы выходной сигнал является током, практически пропорциональным первичному току и при правиль­ном включении сдвинутым относительно него по фазе на угол, близкий к нулю.

Первичная обмотка трансформатора тока включается в цепь последовательно (в рассечку токопровода), а вторичная замыка­ется на некоторую нагрузку (измерительные приборы и реле), обеспечивая в ней ток, пропорциональный току в первичной обмотке.

В трансформаторах тока высокого напряжения первичная обмотка изолирована от вторичной (земля) на полное рабочее напряжение. Один конец вторичной обмотки обычно заземляется. Поэтому она имеет потенциал, близкий к потенциалу земли.

Трансформаторы тока по назначению разделяются на транс­форматоры тока для измерений и трансформаторы тока для за­щиты. В некоторых случаях эти функции совмещаются в одном ТТ.

Трансформаторы тока для измерений предназначаются для передачи информации измерительным приборам. Они устанавли­ваются в цепях высокого напряжения или в цепях с большим током, т. е. в цепях, в которых невозможно непосредственное включение измерительных приборов. Ко вторичной обмотке ТТ для измерений подключаются амперметры, токовые обмотки ватт­метров, счетчиков и аналогичных приборов. Таким образом, транс­форматор тока для измерений обеспечивает:

1) преобразование переменного тока любого значения в пере­менный, ток, приемлемый для непосредственного измерения с по­мощью стандартных измерительных приборов;

2) изолирование измерительных приборов, к которым имеет доступ обслуживающий персонал, от цепи высокого напряжения.

Трансформаторы тока для защиты предназначаются для пе­редачи измерительной информации в устройства защиты и управ­ления. Соответственно этому трансформатор тока для защиты обе­спечивает:

1) преобразование переменного тока любого значения в пере­менный ток,

приемлемый для питания устройств релейной за­щиты;

2) изолирование реле, к которым имеет доступ обслуживаю­щий персонал, от цепи высокого напряжения.

Трансформаторы тока в установках высокого напряжения необходимы даже в тех случаях, когда уменьшения тока для измерительных приборов или реле не требуется.

Классификация трансформаторов тока

В зависимости от рода тока ИПТ разделяются на ИП переменного и ИП постоянного тока. В работе будут рассматриваться ИПТ переменного тока для уста­новок и сетей с номинальной частотой тока 50 Гц.

Все трансформаторы тока можно классифицировать по следующим основным признакам:

По роду установки: трансформаторы тока для работы на от­крытом воздухе (категория размещения 1 по ГОСТ 15150-69); для работы в закрытых помещениях (по ГОСТ 151504-69); для встраивания в полости электрооборудования; для специальных установок (в шахтах, на судах, электровозах и т. д.).

По способу установки: проходные трансформаторы тока, предназначенные для использования в качестве ввода и устанавливаемые в проемах стен, потолков или в металлических конструкциях; опорные, предназначенные для установки на опорной плоскости; встраиваемые, т. е. предназначенные для установки в полости электрооборудования.

По числу коэффициентов трансформации: с одним коэффици­ентом трансформации; с несколькими коэффициентами трансфор­мации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток, или применением не­скольких вторичных обмоток с различным числом витков, соот­ветствующим различному номинальному вторичному току.

По числу ступеней трансформации: одноступенчатые; кас­кадные (многоступенчатые), т. е. с несколькими ступенями транс­формации тока.

По выполнению первичной обмотки: одновитковые; многовитковые.

Одновитковые ТТ (рис. 1) имеют две разновидности: без собственной первичной обмотки; с собственной первичной обмоткой. Одновитковые ТТ, не имеющие собственной первичной обмотки, выполняются встроенными, шинными или разъемными.

Встроенный трансформатор тока 1 представляет собой магнитопровод с намотанной на него вторичной обмоткой. Он не имеет, собственной первичной обмотки. Ее роль выполняет токоведущий стержень проходного изолятора. Этот трансформатор тока не имеет изоляционных элементов между первичной и вто­ричной обмотками.

Их роль выполняет изоляция проходного изо­лятора.

Рис. 1. Схема трансформатора тока;

В шинном трансформаторе тока роль первичной обмотки выполняют одна или несколько шин распределительного устрой­ства, пропускаемые при монтаже сквозь полость проходного изоля­тора. Последний изолирует такую первичную обмотку от вто­ричной.

Разъемный трансформатор тока 2 тоже не имеет собственной первичной обмотки.

Его магнитопровод состоит из двух частей, стягиваемых болтами. Он может размыкаться и смыкаться вокруг проводника с током, являющимся первичной обмоткой этого ТТ. Изоляция между первичной и вторичной обмотками наложена на магнитопровод со вторичной обмоткой.

Одновитковые ТТ, имеющие собственную первичною обмотку, выполняются со стержневой первичной обмоткой или с U-образной.

Трансформатор тока 3 имеет первичную обмотку в виде стержня круглого или прямоугольного сечения, закрепленного в проход­ном изоляторе.

Трансформатор тока 4 имеет U-образную первичную обмотку, выполненную таким образом, что на нее наложена почти вся внутренняя изоляция ТТ.

Многовитковые трансформаторы тока (рис. 1) изготовляются с катушечной первичной обмоткой надеваемой на магнитопровод; с петлевой первичной обмоткой 5, состоящей из нескольких витков; со звеньевой первичной обмоткой, выполненной таким образом, что внутренняя изоляция трансформатора тока конструктивно распределена между первич­ной и вторичной обмотками, а взаимное расположение обмоток напоминает звенья цепи; с рымовидной первичной обмоткой, выполненной таким образом, что внутренняя изоляция трансфор­матора тока нанесена в основном только на первичную обмотку, имеющую форму рыма.

По роду изоляции между первичной и вторичной обмотками ТТ изготовляются с твердой (фарфор, литая изоляция, прессован­ная изоляция и т, д.); с вязкой (заливочные компаунды); с ком­бинированной (бумажно-масляная, конденсаторного типа) или газообразной (воздух, элегаз) изоляцией.

По принципу преобразования тока ТТ делятся на электромаг­нитные и оптико-электронные.

Принципиальная схема трансформатора тока

Принципиальная схема одноступенчатого электромагнитного трансформатора тока и его схема замещения приведены на рис. 2. Как видно из схемы, основными элементами трансформатора тока участвующими в преобразо­вании тока, являются пер­вичная 1 и вторичная 2 об­мотки, намотанные на один и тот же магнитопровод 3. Первичная обмотка включа­ется последовательно (в рас­сечку токопровода высокого напряжения 4, т. е. обтекается током линии Ij. Ко вторичной обмотке подключаются измерительные приборы (амперметр, токовая обмотка счетчика) или реле. При ра­боте трансформатора тока вторичная обмотка всегда замкнута на нагрузку.

Рис. 2. Принципиальная схема трансформатора тока и его схема замещения.

Первичную обмотку совместно с цепью высокого напряжения называют первичной цепью, а внешнюю цепь, получаю­щую измерительную информацию от вторичной обмотки трансфор­матора тока (т. е. нагрузку и соединительные провода), называют вторичной цепью. Цепь, образуемую вторичной об­моткой и присоединенной к ней вторичной цепью, называют ветвью вторичного тока.

Из принципиальной схемы трансформатора видно, что между первичной и вторичной обмотками не имеется электрической связи. Они изолированы друг от друга на полное рабочее напря­жение. Это и позволяет осуществить непосредственное присоеди­нение измерительных приборов или реле ко вторичной обмотке и тем самым исключить воздействие высокого напряжения, при­ложенного к первичной обмотке, на обслуживающий персонал. Так как обе обмотки наложены на один и тот же магнитопровод, то они являются магнитно-связанными.

На рис. 2 изображены только те элементы трансформатора тока, которые участвуют в преобразовании тока. Конечно, ТТ имеет много других элементов, обеспечивающих требуемый уро­вень изоляции, защиту от атмосферных воздействий надлежащие монтажные и эксплуатационные характеристики.

Перейдем к рассмотрению принципов действия трансформатора тока (рис. 2). По первичной обмотке 1 трансформатора тока про­ходит ток I1, называемый первичным током. Он зависит только от параметров первичной цепи. Поэтому при анализе явлений, происходящих в трансформаторе тока, первичный ток можно считать заданной величиной. При прохождении первичного тока по первичной обмотке в магнитопроводе создается перемен­ный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Магнитный поток Ф1 охватывает витки как первичной, так и вторичной обмоток. Пересекая витки вторичной обмотки, магнитный поток Ф1 при своем изменении индуцирует в ней элект­родвижущую силу. Если вторичная обмотка замкнута на некото­рую нагрузку, т. е. к ней присоединена вторичная цепь, то в такой системе «вторичная обмотка — вторичная цепь» под действием индуцируемой э. д. с. Будет проходить ток. Этот ток согласно закону Ленца будет иметь направление, противоположное на­правлению первичного тока Ii. Ток, проходящий по вторичной обмотке, создает в магнитопроводе переменный магнитный поток Ф2, который направлен встречно магнитному потоку Ф1. Вследствие этого магнитный поток в магнитопроводе, вызванный первичным током, будет уменьшаться.

В результате сложения магнитных потоков Ф1 и Ф2 в магнито­проводе устанавливается результирующий магнитный поток:

Ф0 = Ф1 — Ф2

составляющий несколько процентов магнитного по­тока Ф1. Поток Ф0 и является тем передаточным «звеном, посред­ством которого осуществляется передача энергий от первичной обмотки ко вторичной в процессе преобразования тока.

Результирующий магнитный поток Ф0, пересекая витки обеих обмоток, индуцирует при своем изменении в первичной обмотке противо-Э.Д.С. E1, а во вторичной обмотке — э. д. с. E2. Так как витки первичной и вторичной обмоток имеют примерно одинаковое сцепление с магнитным потоком в магнитопроводе (если прене­бречь рассеянием), то в каждом витке обеих обмоток индуцируется одна и та же Э.Д.С. Под воздействием Э. Д. С. E2 во вторичной обмотке протекает ток I2, называемый вторичным током.

Если обозначить число витков первичной обмотки, через ω1, а вторичной обмотки — через ω2, то при протекании по ним соот­ветственно токов I1 и I2 в первичной обмотке создается магнито­движущая сила

F1 = I1 ω1

называемая первичной маг­нитодвижущей силой (М. Д. С.), а во вторичной обмотке — магнитодвижущая сила

F2 = I2 ω2

называемая вто­ричной М. Д. С. Магнитодвижущая сила измеряется в ам­перах.

При отсутствии потерь энергии в процессе преобразования тока магнитодвижущие силы F1 и F2 должны быть численно равны, но направлены в противоположные стороны.

Трансформатор тока, у которого процесс преобразования тока не сопровождается потерями энергии, называется идеаль­ным. Для идеального трансформатора тока справедливо следую­щее векторное равенство:

F1=F2 (1)

Или

I1 ω1=I2 ω2 (2)

Из равенства (2) следует, что

I1/I2 = ω1/ ω2 = n (3)

Т. е. токи в обмотках идеального трансформатора тока обратно пропорциональны числам витков.

Отношение первичного тока ко вторичному (I1/I2) или числа витков вторичной обмотки к числу витков первичной обмотки (ω12) называется коэффициентом трансформации n идеального трансформатора тока. Учитывая равенство (3), можно написать

I1 = I21/ ω2) = I2n (4)

т. е. первичный ток I1 равен вторичному току I2, умноженному на коэффициент трансформации трансформатора тока n.

В реальных ТТ преобразование тока сопровождается потерями энергии, расходуемой на создание магнитного потока в магнитопроводе, на нагрев и перемагничивание магнитопровода, а также на нагрев проводов вторичной обмотки и вторичной цепи.

Эти потери энергии нарушают установленные выше равенства для абсолютных значений М. Д. С. F1 и F2. В реальном трансформа­торе первичная М. Д. С. должна обеспечить создание необходимой вторичной М. Д. С., а также дополнительной М. Д. С., расходуе­мой на намагничивание магнитопровода и покрытие других по­терь энергии. Следовательно, для реального трансформатора урав­нение (1) будет иметь следующий вид:

F1 = F2 +F0 (5)

где F0 — полная М. Д. С. намагничивания, затрачиваемая на про­ведение магнитного потока Ф0 по магнитопроводу, на нагрев и перемагничивание его.

В соответствии с этим равенство (2) примет вид

I1 ω1= I2 ω2 + I0 ω0 (6)

где I0 — ток намагничивания, создающий в магнитопроводе магнитный поток Ф0 и являющийся частью первичного тока I1. Разделив все члены уравнения (6) на ω1 получим:

I1 = I22/ ω1) + I0 (7)

При первичном токе, не превышающем номинальный ток ТТ, ток намагничивания обычно составляет не более 1÷3 % первич­ного тока и им можно пренебречь. Тогда (7) будет иметь такой же вид, как (4), т. е.

I1 = I2n

Таким образом, вторичный ток трансформатора пропорциона­лен первичному току.

Из выражений (4) и (7) следует, что для понижения измеряемого тока необходимо, чтобы число витков вторичной обмотки было больше числа витков первичной обмотки.

Сравнивая формулы (2) и (5), видим, что они отличаются друг от друга членом F0 (или I0ω1). Следовательно, реальный трансформатор тока несколько искажает результаты измерений, т. е. имеет погрешности.

Иногда пользуются так называемым приведением тока к пер­вичной или вторичной обмотке. Так, например, если разделить первичный ток на коэффициент трансформации, то получим пер­вичный ток, приведенный ко вторичной обмотке: I0 = I1/n. Ана­логично приведенный ток намагничивания будет I0 = I0/n. Тогда получим:

I1 = I2 + I0 (8)

Путем такого приведения трансформатор тока заменяется эквивалентным ТТ с коэффициентом трансформации, равным еди­нице.

Из полученного равенства (8) следует, что часть приведенного первичного тока I1 идет на намагничивание магнитопровода, а остальная часть трансформируется во вторичную цепь, т. е. первичный ток Iкак бы разветвляется по двум параллельным цепям: по цепи нагрузки и цепи намагничивания. Этому соответ­ствует схема замещения, приведенная на рис. 2, где в цепь ветви намагничивания z0 от тока I1 ответвляется ток I0. Остальная часть тока Iпроходит по вторичной цепи, представляя собой вторичный ток I2

Сопротивление первичной обмотки ТТ на схеме замещения не показано, так как оно не оказывает влияния на работу трансформатора.

  1. Для правильного выбора измерительного трансформатора тока, помимо основных электрических параметров и габаритов, необходимо учитывать потери во вторичной (измерительной) цепи трансформатора, которые влияют на точность измерения. Предельные величины этих потерь, соответствующие классу точности прибора (0,5-1 или приведены в технических характеристиках.

  1. также Выбор трансформаторов тока производится:

  • по напряжению

  • по первичному току

> ( ≈ )

  • по конструкции и классу точности

  • по электродинамической стойкости iу (kдин I1 ном)

  • по вторичной нагрузке Z2 ( Z2 ном) [5А; 1А, по заказу 2;2,5А]

  • по термической стойкости

  1. В настоящее время выбор измерительных трансформаторов в основном сводится к подбору из серийно выпускаемых тех, которые по своим номинальным параметрам лежат наиболее близко к требуемым. Такой подход достаточно прост, однако не всегда позволяет произвести правильно выбор и очень часто может приводить к увеличению погрешности измерений. Рассмотрим и проанализируем некоторые подобные случаи:

Случай 1. Для коммерческого учета требуется опорный трансформатор тока на малый первичный ток (напр. 50А) с высоким значением тока термической стойкости (31,6 КА).

Среди серийно выпускаемых трансформаторов тока подобных нет, поскольку обычные опорные трансформаторы на малые первичные токи имеют такие малые значения токов термической стойкости.

Как поступают на практике проектировщики? Они выбирают из серийных трансформаторов тот, который обеспечивает необходимый ток термической стойкости и имеет при этом минимальный первичный ток. В частности, для нашего примера - это трансформатор тока на 300А с классом точности 0,5.

Согласно ГОСТ, этот трансформатор должен обеспечивать точность измерений в пределах от 5% и до 120% номинального первичного тока, т.е. от 15А и до 360А, и следовательно его можно использовать для измерений на 50А. Так ли это?

Во-первых, трансформатор тока на 300А при 50А первичного тока по ГОСТ допускает ошибку от ±0,75% до ±1,5%, что значительно выше, чем ошибка, которая допускается для трансформатора тока с номинальным значением первичного тока 50А - это ±0,5%.

Во-вторых, для трансформатора тока на 50А нижний предел первичного тока равен 2,5А вместо 15А для трансформатора на 300А.

Таким образом, используя трансформатор тока на 300А, мы увеличили погрешность измерений и повысили допускаемый нижний предел первичного тока.

Случай 2. Для защиты, требуется трансформатор тока с определенной предельной кратностью вторичного тока.

Чтобы иметь возможность использовать серийный трансформатор, проектировщики требуют для него кривые зависимости предельной кратности вторичного тока от вторичной нагрузки .

С помощью этих кривых, определяется максимальное значение вторичной нагрузки при нужных значениях предельной кратности.

Если вторичная нагрузка оказывается меньше требуемой по проекту, то с помощью варьирования сечения и длины соединяющих проводов, проектировщики добиваются необходимых значений вторичной нагрузки.

Таким образом, технически проблема решена, однако часто это решение оказывается экономически невыгодным из-за необходимости увеличения сечения проводов и уменьшения расстояния, за счет переноса релейных шкафов.

Случай 3. Нужен измерительный трансформатор тока с определенным коэффициентом безопасности прибора, чтобы одновременно с измерением обеспечить защиту измерительных приборов в случае короткого замыкания в первичной цепи.

На практике требуемые значения коэффициента безопасности прибора обычно равно 5 или 10, а серийные трансформаторы часто имеют значения 20, 30 и более. При таких значениях говорить о защите измерительных приборов бессмысленно и поэтому придется устанавливать дополнительную защиту.

Серийные трансформаторы тока не позволяют в полной мере использовать преимущества трансформаторов тока с заданными значениями коэффициента безопасности прибора.

Можно привести еще целый ряд других случаев, когда использование серийных трансформаторов с определенными, уже заранее установленными номинальными параметрами, приводит как к увеличению погрешности измерений, так и значительному удорожанию всей системы измерения и защиты.

Как быть в таком случае?

Решение проблемы достаточно просто - нужно иметь возможность заказывать производителям трансформаторов изготавливать трансформаторы на те номинальные параметры, которые нужны заказчику. Такой подход давно практикуется на фирме KWK Messwandler. Сегодня это совершенно реально и не требует специальной дорогостоящей разработки.

С помощью компьютерной техники в течение нескольких минут рассчитывается нужный трансформатор, а с помощью современных методов производства их можно изготовить также быстро и дешево, как и серийные трансформаторы.

Заказчик, заказывая на фирме измерительный трансформатор, указывает технические требования, которые ему необходимы, а фирма такой трансформатор проектирует и изготавливает.

Для трансформаторов тока обычно указывают следующие параметры:

  • номинальный первичный и вторичный токи;

  • номинальная вторичная нагрузка;

  • номинальное напряжение;

  • число обмоток;

  • класс точности каждой обмотки

  • для измерений - коэффициент безопасности приборов,

  • для защиты - предельную кратность вторичного тока

  • ток термической и динамической стойкости;

  • номинальная частота и т.д.

На основании этих данных производитель изготавливает нужный заказчику измерительный трансформатор тока.

Таким образом, такой подход к выбору трансформаторов позволяет обеспечить качественный учет электроэнергии, правильную работу защиты и минимизировать затраты.