
- •Почему усложняется связь дизеля с колесами тепловоза
- •Как связать дизель с колесами тепловоза?
- •Понятие об экипаже
- •Как расположить оборудование?
- •Условия возникновения процесса горения
- •Схемы дизелей
- •Степень сжатия
- •Рабочие циклы дизелей
- •Продувка цилиндра двухтактного дизеля
- •Фазы газораспределения четырехтактного и двухтактного дизелей
- •Индикаторная диаграмма
- •Мощность дизеля среднее индикаторное давление
- •Понятие об энергии
- •Подсчет работы и мощности дизеля
- •Пути повышения мощности дизеля
- •Наддув. Турбокомпрессоры. Кпд дизеля что такое наддув и как он осуществляется?
- •Что дает экономия топлива?
- •Коэффициент полезного действия дизеля и баланс энергии в дизеле
- •Блок дизеля, цилиндровые втулки и поршни блок дизеля и поддизельная рама
- •Цилиндровые втулки
- •Поршневые кольца
- •Поршневые пальцы
- •Шатунно-кривошипный механизм шатуны
- •Что представляет собой коленчатый вал
- •Конструктивные особенности коленчатого вала
- •Подшипники коленчатого вала
- •Вертикальная передача
- •Крутильные колебания. Антивибраторы что такое крутильные колебания и как с ними бороться?
- •Механизм газораспределения окна и клапаны
- •Механизм газораспределения
- •Особенности механизма газораспределения
- •Опливная система и аппаратура назначение и схемы топливных систем дизеля
- •Распыливание топлива
- •Топливные насосы высокого давления
- •Форсунки
- •Автоматическое регулирование для чего нужны регуляторы?
- •Принцип работы центробежного регулятора прямого действия
- •Центробежный регулятор непрямого действия
- •Понятие о жесткой обратной связи
- •Упругая (гибкая) обратная связь в регуляторе непрямого действия. Изодромный регулятор
- •Объединенный регулятор
- •Электрогидравлический механизм затяжки пружины
- •Охлаждающее устройство дизеля для чего и чем охлаждают детали дизеля?
- •Как вода охлаждает детали дизеля?
- •Чем охлаждать масло?
- •Водомасляный теплообменник
- •Чем охлаждать наддувочный воздух?
- •Система автоматического регулирования температуры
- •Очистка масла, топлива и воздуха важное условие надежной работы дизеля
- •Фильтр грубой очистки масла
- •Фильтр тонкой очистки масла
- •Центробежный очиститель масла
- •Топливные фильтры
- •Воздухоочистители
- •Виды электрических передач требования к электрическому оборудованию
- •Основные виды электрических передач
- •Принцип действия генератора постоянного тока принцип действия генератора постоянного тока
- •Основные показатели работы генератора
- •Внешняя характеристика тягового генератора
- •Устройство тягового генератора постоянного тока
- •Яговый генератор переменного тока почему стали применять тяговые генераторы переменного тока?
- •Синхронный тяговый генератор
- •Двухмашинный агрегат и тахогенераторы особенности устройства и характеристики возбудителей
- •Двухмашинный агрегат
- •Тахогенератор тепловоза
- •Синхронный подвозбудитель тепловоза 2тэ10л
- •Тяговые электродвигатели постоянного тока принцип действия электродвигателя постоянного тока
- •Основные показатели работы и свойства электродвигателя постоянного тока
- •Устройство тяговых электродвигателей тепловозов
- •Как расширить диапазон скорости тепловоза
- •Почему на тепловозах нельзя применять контрток? электродинамическое торможение
- •Тяговые двигатели переменного тока
- •Аккумуляторные батареи аккумулятор — химический источник тока
- •Свинцовый аккумулятор
- •Щелочной аккумулятор
- •Устройство аккумуляторных батарей тепловозов
- •Контакторы
- •Контроллер машиниста
- •Реверсор
- •Кнопочный выключатель и тумблеры
- •Реле назначение реле
- •Реле обратного тока
- •Реле переключения (перехода)
- •Реле заземления
- •Реле боксования
- •Реле давления масла, температурное реле, реле времени реле давления масла
- •Температурное реле
- •Реле времени
- •Регулятор напряжения
- •Рансформаторы в системах автоматического регулирования мощности дизель-генератора
- •Трансформаторы постоянного напряжения и тока
- •Полупроводниковые вентили-диоды и стабилитроны
- •Выпрямление переменного тока
- •Транзисторы и тиристоры
- •Полупроводниковый регулятор напряжения
- •Основные группы электрических цепей тепловоза
- •Цепи возбуждения тягового генератора и возбудителя
- •Получение жестких динамических характеристик тягового генератора
- •Цепи возбуждения возбудителя в системах машинного регулирования мощности генератора
- •Цепи освещения
- •Колесная пара
- •Как установить и соединить тяговый электродвигатель с колесной парой?
- •Буксы и подшипники
- •Рессорное подвешивание
- •Тележка и ее рама
- •Главная рама и кузов тепловоза
- •Опоры кузова. Возвращающие устройства
Основные показатели работы генератора
Величина э.д.с, индуктируемой генератором, прямо пропорциональна магнитному потоку Ф, создаваемому главными полюсами, и частоте вращения якоря п:
где
С — постоянный коэффициент, учитывающий
число витков обмотки якоря,
число пар полюсов и другие
постоянные величины,
характеризующие данный генератор.
Напряжение на выводах генератора
меньше его э.д.с. на величину падения
напряжения в цепи якоря. Падение
напряжения в цепи якоря определяется
по закону Ома и равно произведению тока
якоря Iя на сопротивление цепи якоря
Rя. Следовательно, напряжение
на выводах генератора
Общее сопротивление цепи якоря состоит из сопротивлений обмотки якоря, последовательной обмотки возбуждения, обмотки добавочных полюсов, щеток и переходов между коллектором и щетками. Падение напряжения в цепи якоря очень небольшое, так как сопротивление обмотки якоря мало. Поэтому напряжение генератора бывает лишь незначительно меньше его э.д.с. Из этих двух формул также следует, что величину э.д.с. генератора и напряжения на его зажимах можно изменять двумя способами: изменением магнитного потока полюсов или частоты вращения якоря. Отдаваемая во внешнюю цепь мощность генератора в киловаттах:
Мощность, отдаваемая генератором, всегда меньше мощности, затрачиваемой на вращение якоря и возбуждение, потому что внутри генератора происходят потери энергии. К этим потерям относятся механические потери (трение в подшипниках, трение коллектора о щетки), потери на нагрев проводов обмотки якоря и обмотки возбуждения, магнитные потери и т. д. Отношение полезной мощности генератора, т. е. той, которую он отдает во внешнюю цепь, к мощности, затрачиваемой для привода генератора и его возбуждения, называют коэффициентом полезного действия генератора. Если тяговый генератор тепловоза работает с полной нагрузкой, его к.п.д. достигает 94—95%, т. е. потери в нем весьма малы. Для возбуждения (cсоздания рабочего магнитного потока в электрических машинах) генератора по обмотке его главных полюсов пропускают ток, называемый током возбуждения. По способу возбуждения генераторы разделяются на два типа: генераторы с независимым возбуждением и генераторы с самовозбуждением. В генераторах с независимым возбуждением обмотка возбуждения получает питание от постороннего источника электрической энергии, обычно от другого генератора постоянного тока или реже от аккумуляторной батареи (рис. 139, а).
Рис. 139. Схемы возбуждения генератора: а -независимое возбуждение; б - параллельное возбуждение; в - последовательное возбуждение; г - смешанное возбуждение
В генераторах с самовозбуждением питание обмотки возбуждения осуществляется от самого генератора, т. е. током, вырабатываемым в его якоре. При этом используется явление остаточного магнетизма, которым обладает, например, мягкая сталь. Полюсные сердечники из мягкой стали являются постоянными магнитами, хотя и очень слабыми. В обмотке вращающегося якоря генератора за счет остаточного магнетизма индуктируется небольшая э.д.с. Под действием этой э.д.с. в обмотке возбуждения возникает незначительный ток. Магнитный поток, создаваемый током возбуждения, усилит остаточный магнитный поток полюсов, и э. д. с. якоря возрастет, что в свою очередь приводит к дальнейшему увеличению тока возбуждения. Так последовательно магнитный поток полюсов достигает расчетной величины. Генератор индуктирует необходимую э. д. с. и сам питает током свою обмотку возбуждения. Генераторы с самовозбуждением в зависимости от схемы соединения обмотки возбуждения с якорем разделяются на три основных типа (рис. 139, б, в, г). В генераторе параллельного возбуждения обмотка главных полюсов включается параллельно силовой цепи. Ток, вырабатываемый в обмотке якоря, разветвляется: основной ток проходит в силовую цепь, а небольшая часть тока — по обмотке возбуждения. В генераторе последовательного возбуждения обмотка главных полюсов включается последовательно с якорем и по ней проходит весь ток, вырабатываемый генератором. В генераторе со смешанным возбуждением имеются параллельная и последовательная обмотки возбуждения. Сила тока в параллельных обмотках возбуждения обычно ограничивается с помощью резисторов R (см. рис. 139, б, г). Характеристики генератора, а значит, области его применения зависят от схемы возбуждения. О свойствах генератора прежде всего позволяет судить его внешняя характеристика. Внешней характеристикой генератора называют зависимость напряжения на его зажимах от тока нагрузки при неизменной частоте вращения якоря и заданных условиях возбуждения. Рассмотрим более подробно условия работы генератора на тепловозе, свойства, которыми он должен обладать, и необходимую его внешнюю характеристику.