- •Кафедра прикладной механики
- •Часть 1. Статика.
- •Типовые виды связей.
- •Момент силы относительно точки и оси
- •Приведение системы сил к простейшей системе
- •Условия равновесия систем сил Пространственная система сил
- •Пространственная система параллельных сил
- •Плоская система сил
- •После отбрасывания тождеств
- •Теорема о моменте равнодействующей силы (теорема Вариньона)
- •Статически определимые и неопределимые задачи
- •Равновесие системы тел
- •А) Трение скольжения
- •Законы Кулона для сухого трения скольжения
- •Б) Трение качения
- •Законы Кулона для трения качения
- •Методы определения центров масс.
- •Часть II Кинематика
- •Скорость и ускорение точки в естественной системе координат
- •Скорость и ускорение точки в полярных координатах
- •Скорость и ускорение точки в цилиндрических координатах
- •Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость.
- •Сложное движение точки.
- •Степени свободы. Теорема о проекциях
- •Поступательное движение твердого тела
- •Вращение твердого тела вокруг неподвижной оси
- •Скорости и ускорения точек тела при вращении
- •Для точки касания дисков 1,2 нрормальные напряжения равны
- •Плоское движение твердого тела
- •Разложение плоского движения твердого тела на поступательное и вращательное
- •Скорость точек тела при плоском движении. Мгновенный центр скоростей.
- •Способы нахождения мгновенного центра скоростей.
- •Вычисление угловой скорости при плоском движении.
- •Ускорения точек при плоском движении. Мгновенный центр ускорений.
- •Способы нахождения мгновенного центра ускорений.
- •Часть III Динамика Классификация сил. Динамика материальной точки.
- •Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки.
- •Основные виды прямолинейного движения точки. Криволинейное движение.
- •Свободные колебания системы с одной степенью свободы без трения.
- •Свободные колебания системы с одной степенью свободы при наличии трения
- •Вынужденные колебания Системы с одной степенью свободы при отсутствии трения
- •Механическая система. Силы внешние и внутренние Механической системой называется любая совокупность материальных точек.
- •Внутренними силами материальной системы называют силы взаимодействия между точками рассматриваемой системы, мы их будем обозначать . Простейшие свойства внутренних сил системы
- •Дифференциальные уравнения движения системы
- •Геометрические характеристики системы материальных точек. Моменты инерции. Теорема Штейнера. Эллипсоид инерции.
- •Теорема Штейнера
- •Эллипсоид инерции
- •Общие теоремы динамики системы Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Элементарный и полный импульс силы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •Законы сохранения количества движения
- •Теорема о движении центра масс
- •Теорема об изменении кинетического момента Кинетический момент точки и системы
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы точек
- •Движение точки под действием центральной силы. Законы Кеплера. Секторная скорость, теорема площадей
- •Дифференциальные уравнения плоского движения твердого тела
- •Теорема об изменении кинетической энергии
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы материальных точек
- •Потенциальное силовое поле и потенциальная энергия
- •Закон сохранения механической энергии
- •Принцип д'Аламбера для материальной точки
- •Принцип д'Аламбера для механической системы
- •Главный вектор сил инерции механической системы
- •Главный вектор сил инерции твердого тела
- •Главный момент сил инерции механической системы
- •Главный момент сил инерции твердого тела, вращающегося вокруг неподвижной оси
- •Связи и их классификация
- •Основные понятия аналитической механики
- •Принцип возможных перемещений
- •Общее уравнение динамики
- •Уравнения лагранжа 2-го рода
- •Обобщенные силы
- •Литература
Механическая система. Силы внешние и внутренние Механической системой называется любая совокупность материальных точек.
Внешними силами
материальной системы называются силы,
с которыми действуют на точки системы
тела и точки, не входящие в рассматриваемую
систему, будем их обозначать
.
Внутренними силами материальной системы называют силы взаимодействия между точками рассматриваемой системы, мы их будем обозначать . Простейшие свойства внутренних сил системы
Внутренние и внешние силы могут включать в себя как активные силы, так и реакции связей.
Пусть
система состоит из n
точек. Тогда по третьему закону Ньютона,
например для точек 1 и 2, внутренние силы
взаимодействия этих точек равны по
величине и противоположны по направлению:
Равнодействующая
внутренних сил состоит из векторной
суммы сил действия и противодействия,
которая равна нулю:
.
Если рассмотреть
сумму моментов сил
и
относительно некоторой произвольной
точки О, то легко видеть, что
т.к. обе силы имеют одинаковые плечи h и противоположные направления векторных моментов. Главный момент внутренних сил относительно точки О состоит из векторной суммы этих моментов внутренних сил:
Дифференциальные уравнения движения системы
Если к каждой точке системы приложить равнодействующую силу внешних сил и равнодействующую силу всех внутренних сил , то для любой к-ой точки системы можно составить дифференциальное уравнение движения в виде второго закона Ньютона:
Систему этих уравнений называют дифференциальными уравнениями движения механической системы в векторной форме. Если спроектировать их на оси координат, то получим 3n скалярных дифференциальных уравнения.
Мы видели, с какими трудностями приходится сталкиваться при интегрировании дифференциального уравнения движения точки, если сила зависит от времени, положения или скорости. Здесь же мы имеем систему уравнений и трудности неизмеримо возрастают. Поэтому особую роль в динамике системы материальных точек играют общие теоремы, позволяющие в отдельных случаях получить информацию о характере движения системы не проводя трудоемкого интегрирования системы дифференциальных уравнений.
Лекция 12 (динамика)
«Геометрические характеристики системы материальных точек.
Общие теоремы динамики системы точек»
Геометрические характеристики системы материальных точек. Моменты инерции. Теорема Штейнера. Эллипсоид инерции.
|
Рассмотрим точку О, прямую L и плоскость В, а также точки материальной системы (одна из них Ai с массой mi). Расстояния от точки Ai до точки О, прямой L и плоскости В обозначим через ri, i и i соответственно. |
Можно составить выражения:
Суммирование распространено по всем точкам материальной системы. Эти выражения называются моментами инерции соответственно относительно плоскости В, прямой L и точки О.
Аналитические выражения моментов инерции относительно основных координатных элементов связаны равенствами:
Jz=xz+zy, =zx+zy+xy
(Момент инерции относительно какой-либо оси равен сумме моментов инерции относительно двух ортогональных плоскостей, проходящих через эту ось. Момент инерции относительно точки равен сумме моментов инерции относительно трех ортогональных плоскостей, пересекающихся в этой точке.)
Для сплошных тел суммы перейдут в интегралы:
Пример 1.
|
Для
шара массы m,
радиуса R
(плотность
поскольку |

)
имеем момент инерции шарового слоя
текущего радиуса r
толщины dr
относительно центра: