- •Кафедра прикладной механики
- •Часть 1. Статика.
- •Типовые виды связей.
- •Момент силы относительно точки и оси
- •Приведение системы сил к простейшей системе
- •Условия равновесия систем сил Пространственная система сил
- •Пространственная система параллельных сил
- •Плоская система сил
- •После отбрасывания тождеств
- •Теорема о моменте равнодействующей силы (теорема Вариньона)
- •Статически определимые и неопределимые задачи
- •Равновесие системы тел
- •А) Трение скольжения
- •Законы Кулона для сухого трения скольжения
- •Б) Трение качения
- •Законы Кулона для трения качения
- •Методы определения центров масс.
- •Часть II Кинематика
- •Скорость и ускорение точки в естественной системе координат
- •Скорость и ускорение точки в полярных координатах
- •Скорость и ускорение точки в цилиндрических координатах
- •Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость.
- •Сложное движение точки.
- •Степени свободы. Теорема о проекциях
- •Поступательное движение твердого тела
- •Вращение твердого тела вокруг неподвижной оси
- •Скорости и ускорения точек тела при вращении
- •Для точки касания дисков 1,2 нрормальные напряжения равны
- •Плоское движение твердого тела
- •Разложение плоского движения твердого тела на поступательное и вращательное
- •Скорость точек тела при плоском движении. Мгновенный центр скоростей.
- •Способы нахождения мгновенного центра скоростей.
- •Вычисление угловой скорости при плоском движении.
- •Ускорения точек при плоском движении. Мгновенный центр ускорений.
- •Способы нахождения мгновенного центра ускорений.
- •Часть III Динамика Классификация сил. Динамика материальной точки.
- •Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки.
- •Основные виды прямолинейного движения точки. Криволинейное движение.
- •Свободные колебания системы с одной степенью свободы без трения.
- •Свободные колебания системы с одной степенью свободы при наличии трения
- •Вынужденные колебания Системы с одной степенью свободы при отсутствии трения
- •Механическая система. Силы внешние и внутренние Механической системой называется любая совокупность материальных точек.
- •Внутренними силами материальной системы называют силы взаимодействия между точками рассматриваемой системы, мы их будем обозначать . Простейшие свойства внутренних сил системы
- •Дифференциальные уравнения движения системы
- •Геометрические характеристики системы материальных точек. Моменты инерции. Теорема Штейнера. Эллипсоид инерции.
- •Теорема Штейнера
- •Эллипсоид инерции
- •Общие теоремы динамики системы Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Элементарный и полный импульс силы
- •Теорема об изменении количества движения точки
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •Законы сохранения количества движения
- •Теорема о движении центра масс
- •Теорема об изменении кинетического момента Кинетический момент точки и системы
- •Теорема об изменении кинетического момента точки
- •Теорема об изменении кинетического момента системы точек
- •Движение точки под действием центральной силы. Законы Кеплера. Секторная скорость, теорема площадей
- •Дифференциальные уравнения плоского движения твердого тела
- •Теорема об изменении кинетической энергии
- •Теорема об изменении кинетической энергии точки
- •Теорема об изменении кинетической энергии системы материальных точек
- •Потенциальное силовое поле и потенциальная энергия
- •Закон сохранения механической энергии
- •Принцип д'Аламбера для материальной точки
- •Принцип д'Аламбера для механической системы
- •Главный вектор сил инерции механической системы
- •Главный вектор сил инерции твердого тела
- •Главный момент сил инерции механической системы
- •Главный момент сил инерции твердого тела, вращающегося вокруг неподвижной оси
- •Связи и их классификация
- •Основные понятия аналитической механики
- •Принцип возможных перемещений
- •Общее уравнение динамики
- •Уравнения лагранжа 2-го рода
- •Обобщенные силы
- •Литература
Для точки касания дисков 1,2 нрормальные напряжения равны
Векторы угловой скорости и ускорения
|
Из
параграфа о сложном движении точки
считая
и можем получить все предыдущие результаты для вращения тела вокруг неподвижной оси. |
Плоское движение твердого тела
Плоским движением твердого тела называют такое его движение, при котором каждая его точка все время движется в одной и той же неподвижной плоскости. Часто это движение называют плоскопараллельным, так как плоскости, в которых движутся отдельные точки, параллельны между собой.
Траектории точек тела при плоском движении являются плоскими кривыми.
Такой случай движения часто реализуется в технике при движении механизмов и машин.
Вращательное движение твердого тела вокруг неподвижной оси является частным случаем плоского движения.
Для изучения плоского движения твердого тела достаточно рассмотреть движение плоской фигуры в ее плоскости, параллельной неподвижной плоскости 0.
Для задания положения плоской фигуры на плоскости относительно координат Oxy достаточно задать на этой плоскости положение отрезка О'M, скрепленного с фигурой.
|
Скрепим с твердым телом подвижную систему осей O’x’y’ Тогда для координат (x,y) точки М будем иметь:
где
Уравнения движения твердого тела в плоском движении будут иметь вид: xo’ =f1(t); yo’ =f2(t); = f3(t), то есть, имеем три степени свободы |
Раскрывая Cos и Sin суммы и учитывая, что r’Cos=x’, r’Sin=y’ получаем:
или в векторно-матричной форме
,
где
-
матрица поворота на плоскости.
Эти формулы позволяют определить координаты любой точки плоской фигуры по заданным уравнениям движения этой фигуры и координаты ее точки относительно подвижной системы координат, скрепленной с фигурой.
Лекция 8 (кинематика)
«Скорости и ускорения точек при плоском движении»
Разложение плоского движения твердого тела на поступательное и вращательное
Любое движение твердого тела, в том числе движение плоской фигуры в ее плоскости, бесчисленным множеством способов можно разложить на два движения, одно из которых поступательное (переносное), а другое – вращательное (относительное).
|
Пусть тело в своем движении переходит из одного состояния в другое. Мы можем представить это движение двумя способами: 1) тело совершает поступательное перемещение, когда точка А совмещается с А1, потом доворачиваем тело вокруг точки А1, 2) тело совершает поступательное перемещение, когда точка В совмещается с В1, потом доворачиваем тело вокруг точки В1, Точки А1 и В1, вокруг которых мы доворачиваем фигуру, называют полюсами. Нетрудно заметить, что поворот фигуры всегда будет одним и тем же (на угол ), независимо от выбора полюса. Поступательное перемещение зависит от выбора точки – полюса. |
