Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы_синтеза_ВМС.doc
Скачиваний:
3
Добавлен:
16.11.2019
Размер:
214.53 Кб
Скачать

Методы синтеза вмс

Синтетические ВМС получают в результате 2-х типов реакций – полимеризации и поликонденсации.

ПОЛИМЕРИЗАЦИЯ – реакция соединения молекул мономера, протекающая за счет разрыва кратных связей и не сопровождающаяся выделением побочных низкомолекулярных веществ (H2O, HCl, NH3 и др.). Полимеризация мономеров протекает по цепному механизму. В реакцию полимеризации вступают ненасыщенные мономеры с двойной связью. Полимеризация, в которую вступают молекулы одного вещества, называется гомополимеризацией:

nH2C = CH2  [CH2CH2]n nH2C=O [CH2O]n

формальдегид полиформальдегид

Если в реакцию полимеризации вступают различные мономеры, она носит название сополимеризации, например сополимеризация стирола с метилметакрилатом:

Реакция полимеризации не приводит к изменению элементного состава мономера. Как и любая химическая реакция, полимеризация начинается с разрыва одних химических связей и возникновения других. Такой разрыв может происходить по гетеро- или гомолитическому механизму. В первом случае образуются ионы, во втором — свободные радикалы. Таким образом, радикальная и ионная полимеризация различаются природой активного центра, начинающего и ведущего макромолекулярную цепь. Полимеризация, протекающая через образование ионов, называется ионной полимеризацией (катионной или анионной), а идущая с участием свободных радикалов – радикальной.

Радикальная полимеризация –

процесс образования полимера по свободнорадикальному механизму с последовательным присоединением молекул мономера к растущему макрорадикалу. В этом случае активным центром является карбрадикал, т.е. атом углерода, имеющий 1 неспаренный электрон. Такой радикал легко отбирает один из электронов -связи и образует пару электронов, т.е. новую -связь:

Радикал, расположенный на конце растущей цепи, называется радикалом роста. Из схемы видно, что присоединение мономера к радикалу роста сопровождается регенерацией активного центра на конце цепи. Последовательность химических актов, возбужденных одной активной частицей, называется кинетической цепью. Как и всякий цепной процесс, реакция радикальной полимеризации складывается из 3 стадий: инициирования, роста цепи и ее обрыва.

1. Инициирование радикальной полимеризации

Реакция инициирования включает 2 последовательных акта: образование первичных свободных радикалов и присоединение радикалов к мономерам: I  2R

R + CH2=CHX  RCH2CHX

Скорость первой реакции много меньше скорости второй, поэтому она определяет скорость стадии инициирования. В зависимости от способа образования свободных радикалов различают несколько видов инициирования: вещественное, фотохимическое, радиохимическое и термическое.

Вещественное инициирование. В нем используют вещества, распадающиеся с образованием свободных радикалов. Эти соединения содержат в своих молекулах неустойчивые химические связи (ОО, NN, SS, ON и др.). В качестве таких веществ используют пероксиды и азосоединения. Среди пероксидов широко применяются ацил-, алкил-, гидропероксиды и перэфиры. Наиболее известным среди азосоединений является изобутиронитрил, распадающийся с выделением азота:

Благодаря последнему обстоятельству он используется в промышленности не только как инициатор, но и для вспенивания пластмасс при получении пенопластов.

Фотохимическое инициирование. При облучении мономера УФ-светом молекулы, поглотившие квант света, возбуждаются и распадаются на инициирующие полимеризацию радикалы:

M + hv  M*  R1 + R2

Однако прямое облучение мономера малоэффективно, т.к. большинство мономеров не поглощает УФ-свет. В этом случае используют фотосенсибилизатор (Z) - соединение, передающее энергию возбуждения другим молекулам: Z + hv  Z*,

Z* + М  Z + М*  R1 + R2 + Z

Наиболее эффективными фотоинициаторами являются ароматические кетоны и их производные, благодаря широкой области поглощения УФ-спектра.

Фотополимеризация используется для нанесения полимерных покрытий на металл, дерево, керамику, в стоматологии для отверждения композиций зубных пломб, в фотолитографии, с помощью которой изготавливают интегральные схемы в микроэлектронике, а также печатные платы (матрицы) в современной технологии фотонабора, позволяющей исключить использование свинца.

Недостатком фотоинициирования является быстрое падение его эффективности с увеличением толщины облучаемого слоя. Поэтому фотохимическое инициирование эффективно при возбуждении полимеризации в тонких слоях, порядка нескольких миллиметров.

Радиохимическое инициирование. В отличие от фотоизлучения радиоактивное является ионизирующим и обладает гораздо большей проникающей способностью, что объясняется большей энергией его частиц (-частиц, нейтронов, электронов, жесткого электромагнитного излучения и излучения радиоактивных источников Со60). Ионизация мономера является следствием выбивания электронов из его молекул частицами высокой энергии: М + излучение  М+ + ē

Термическое инициирование. Имеется очень мало примеров этого процесса (полимеризация стирола и винилпиридинов).